Skip to main content
Log in

Detecting Functional Connectivity in fMRI Using PCA and Regression Analysis

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

A fMRI connectivity analysis approach combining principal component analysis (PCA) and regression analysis is proposed to detect functional connectivity between the brain regions. By first using PCA to identify clusters within the vectors of fMRI time series, more energy and information features in the signal can be maintained than using averaged values from brain regions of interest. Then, regression analysis can be applied to the extracted principal components in order to further investigate functional connectivity. Finally, t-test is applied and the patterns with t-values lager than a threshold are considered as functional connectivity mappings. The validity and reliability of the presented method were demonstrated with both simulated data and human fMRI data obtained during behavioral task and resting state. Compared to the conventional functional connectivity methods such as average signal based correlation analysis, independent component analysis (ICA) and PCA, the proposed method achieves competitive performance with greater accuracy and true positive rate (TPR). Furthermore, the ‘default mode’ and motor network results of resting-state fMRI data indicate that using PCA may improve upon application of existing regression analysis methods in study of human brain functional connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Refenrences

  • Baumgartner R, Ryner L, Richter W, Summers R, Jarmasz M, Somorjai R (2000) Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis. Magn Reson Imaging 18:89–94

    Article  PubMed  CAS  Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1004–1034

    Article  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Res Med 34:537–541

    Google Scholar 

  • Cordes D, Haughton V, Carew JD, Arfanakis K, Maravilla K (2002) Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging 20(4):305–317

    Article  PubMed  Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29(4):1359–1367

    Article  PubMed  Google Scholar 

  • Esposito F, Formisano E, Seifritz E, Goebel R, Morrone R, Tedeschi G, Di Salle F (2002) Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used? Hum Brain Mapp 16:146–157

    Article  PubMed  Google Scholar 

  • Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of resting-state default mode of brain function hypothesis. Hum Brain Mapp 26:15–29

    Article  PubMed  Google Scholar 

  • Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78

    Article  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13(1):5–14

    PubMed  CAS  Google Scholar 

  • Friston KJ, Holmes AP, Poline JB, Grasby BJ, Williams CR, Frackowiak RSJ, Turner R (1995) Analysis of fMRI time-series revisited. Neuroimage 2:45–53

    Article  PubMed  CAS  Google Scholar 

  • Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD (2007) Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 164:450–457

    Article  PubMed  Google Scholar 

  • Genovse CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging: using the false discovery rate. Neuroimages 15:870–878

    Article  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258

    Article  PubMed  CAS  Google Scholar 

  • Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101(13):4637–4642

    Article  PubMed  CAS  Google Scholar 

  • Hanley J, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36

    PubMed  CAS  Google Scholar 

  • Holmes AP, Friston KJ (1998) Generalisability, random effects and population inference. Neuroimage 7:S754

    Google Scholar 

  • Hu D, Yan L, Liu Y, Zhou Z, Friston KJ, Tan C, Wu D (2005) Unified SPM-ICA for fMRI analysis. Neuroimage 25:746–755

    Article  PubMed  Google Scholar 

  • Huettel SA, Song AW, McCarthy G (2004) Functional magnetic resonance imaging Sinauer Associates: Sunderland, p xviii, 492

  • Johnson RA, Wichern DW (1998) Applied multivariate statistical analysis, 4th edn edn. Prentice-Hall, Inc., Upper Saddle, NJ

    Google Scholar 

  • Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7:119–132

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Wang B, Chen X, Xiong J (2007) Detecting functional connectivity in the resting brain: a comparison between ICA and CCA. Magn Reson Imaging 25(1):47–56

    Article  PubMed  Google Scholar 

  • Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104:13170–13175

    Article  PubMed  CAS  Google Scholar 

  • McKeown MJ (2000) Detection of consistently task-related activations in fMRI data with hybrid independent component analysis. Neuroimage 11:24–35

    Article  PubMed  CAS  Google Scholar 

  • Mckeown MJ, Sejnowski TJ (1998) Independent component analysis of fMRI data: examining the assumptions. Hum Brain Mapp 6:368–372

    Article  PubMed  CAS  Google Scholar 

  • Mckeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682

    Article  PubMed  CAS  Google Scholar 

  • Strother SC, Anderson JR, Schaper KA, Sidtis JJ, Liow JS, Woods RP, Rottenberg DA (1995) Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping: I. ‘‘Functional connectivity’’ of the human motor system studied with [15O] water PET. J Cereb Blood Flow Metab 15:738–753

    PubMed  CAS  Google Scholar 

  • Sychra JJ, Bandettini PA, Bhattacharya N, Lin Q (1994) Synthetic images by subspace transforms I. Principal components images and related filters. Med Phys 21(2):193–201

    Article  PubMed  CAS  Google Scholar 

  • Thomas CG, Harshman RA, Menon RS (2002) Noise reduction in BOLD-based fMRI using component analysis. Neuroimage 17(3):1521–1537

    Article  PubMed  Google Scholar 

  • Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DEJ (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 22(3):165–178

    Article  PubMed  Google Scholar 

  • Wu X, Chen K, Liu Y, Long Z, Wen X, Jin Z, Yao L (2008) Ipsilateral brain deactivation specific to the nondominant hand during simple finger movements. Neuroreport 19(4):483–486

    Article  PubMed  Google Scholar 

  • Zhao X, Glahn D, Tan L, Li N, Xiong J, Gao J (1999) Comparison of TCA and ICA techniques in fMRI data processing. J Magn Reson Imaging 19:397–402

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Nature Science Foundation of China (30470510, 30670600, and 30800264; 60628101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Y., Wang, H., Lu, G. et al. Detecting Functional Connectivity in fMRI Using PCA and Regression Analysis. Brain Topogr 22, 134–144 (2009). https://doi.org/10.1007/s10548-009-0095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-009-0095-4

Keywords

Navigation