Skip to main content

Advertisement

Log in

Daytime Temporal Variation of Surface-Layer Parameters and Turbulence Kinetic Energy Budget in Topographically Complex Terrain Around Umiam, India

  • Notes and Comments
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We present the temporal variation of surface-layer parameters and the turbulence kinetic energy budget over complex terrain during daytime. Data from three-dimensional fast response sonic anemometers at heights 6 m, 18 m, and 30 m above the ground are used for the analysis. Mountainous topography induces wind-direction variability over the measurement site throughout the day, which significantly influences the diurnal evolution of sensible heat flux, momentum flux, and turbulence kinetic energy. The increase and decrease of turbulence kinetic energy rely on the various production and consumption terms. Buoyancy dominates in the morning whereas in the afternoon both buoyancy and shear production contribute equally for the turbulence kinetic energy. The turbulence kinetic energy budget is also influenced by horizontal advection at the station. The correlation between turbulent decay and buoyancy (shear production) is negative (positive) in free convective conditions in the morning, whereas no correlation is observed for mixed convective conditions in the afternoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Barr S, Orgill MM (1989) Influence of external meteorology on nocturnal valley drainage winds. J Appl Meteorol 28:497–517

    Article  Google Scholar 

  • Bianco L, Djalalova IV, King CW, Wilczak JM (2011) Diurnal evolution and annual variability of boundary layer height and its correlation with other meteorological variables in California’s Central Valley. Boundary-Layer Meteorol 140:491–511. https://doi.org/10.1007/s10546-011-9622-4

    Article  Google Scholar 

  • Bonan GB (2002) Ecological climatology. Cambridge University Press, Cambridge

    Google Scholar 

  • Caughey S, Wyngaard J (1979) The turbulence kinetic energy budget in convective conditions. Q J R Meteorol Soc 105(443):231–239

    Article  Google Scholar 

  • Dikshit KR, Dikshit JK (2014) North-east India: land, people, and ecology. Advances in Asian human-environment research. Springer, Berlin, pp 118–120

    Book  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78(1–2):83–105

    Article  Google Scholar 

  • Foken T, Skeib G, Richter SH (1991) Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler-Sodar measurements. Z Meteorol 41:311–315

    Google Scholar 

  • Geissbühler P, Siegwolf R, Eugster W (2000) Eddy covariance measurements on mountain slopes: the advantage of surface-normal sensor orientation over a vertical set-up. Boundary-Layer Meteorol 96(3):371–392

    Article  Google Scholar 

  • Goulart A, Degrazia G, Rizza U, Anfossi D (2003) A theoretical model for the study of convective turbulence decay and comparison with large-eddy simulation data. Boundary-Layer Meteorol 107:143–155

    Article  Google Scholar 

  • Goulart A, Bodmann B, de Vilhena M, Soares P, Moreira D (2010) On the time evolution of the turbulent kinetic energy spectrum for decaying turbulence in the convective boundary layer. Boundary-Layer Meteorol 138:61–75

    Article  Google Scholar 

  • Hahn DC (1980) Observed characteristics of turbulence in the atmospheric boundary layer over mountainous terrain. Department of Atmospheric Science, Colorado State University, Fort Collins

    Google Scholar 

  • Helgason W, Pomeroy JW (2012) Characteristics of the near-surface boundary layer within a mountain valley during winter. J Appl Meteorol Climatol 51:583–597. https://doi.org/10.1175/JAMC-D-11-058.1

    Article  Google Scholar 

  • Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47:1949–1972

    Article  Google Scholar 

  • Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78:215–246

    Article  Google Scholar 

  • Hughes M, Hall A, Fovell RG (2007) Dynamical controls on the diurnal cycle of temperature in complex topography. Clim Dyn 29(2–3):277–292. https://doi.org/10.1007/s00382-007-0239-8

    Article  Google Scholar 

  • Jiang Q, Doyle JD, Grubišic V, Smith RB (2010) Turbulence characteristics in an elevated shear layer over Owens Valley. J Atmos Sci 67(7):2355–2371

    Article  Google Scholar 

  • Karacostas TS, Marwitz JD (1980) Turbulent kinetic energy budgets over mountainous terrain. J Appl Meteorol 19(2):163–174

    Article  Google Scholar 

  • Kolmogorov A (1941) Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303

    Google Scholar 

  • Kumar V, Kleissl J, Meneveau C, Parlange M (2006) Large eddy simulation of a diurnal cycle of the atmospheric boundary layer: atmospheric stability and scaling issues. Water Resour Res 42:3–18

    Article  Google Scholar 

  • Li JG, Atkinson BW (1999) Transition regimes in valley airflows. Boundary-Layer Meteorol 91:385–411

    Article  Google Scholar 

  • Lothon M, Druilhet A, Bénech B, Campistron B, Bernard S, Said F (2003) Experimental study of five föhn events during the mesoscale alpine programme: from synoptic scale to turbulence. Q J R Meteorol Soc 129(592):2171–2193

    Article  Google Scholar 

  • Lothon M, Lohou F, Pino D, Couvreux F, Pardyjak ER, Reuder J, Vilà-Guerau de Arellano J, Durand P, Hartogensis O, Legain D, Augustin P, Gioli B, Lenschow DH, Faloona I, Yagüe C, Alexander DC, Angevine WM, Bargain E, Barrié J, Bazile E, Bezombes Y, Blay-Carreras E, van de Boer A, Boichard JL, Bourdon A, Butet A, Campistron B, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre H, Derrien S, Flament P, Fourmentin M, Garai A, Gibert F, Graf A, Groebner J, Guichard F, Jiménez MA, Jonassen M, van den Kroonenberg A, Magliulo V, Martin S, Martinez D, Mastrorillo L, Moene AF, Molinos F, Moulin E, Pietersen HP, Piguet B, Pique E, Román- Cascón C, Rufin-Soler C, Saïd F, Sastre-Marugán M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos D, Wacker S, Wildmann N, Zaldei A (2014) The BLLAST field experiment: boundary-layer late afternoon and sunset turbulence. Atmos Chem Phys 14:10931–10960. https://doi.org/10.5194/acp-14-10931

    Article  Google Scholar 

  • Mahrt V (2006) Variation of surface air temperature in complex terrain. J Appl Meteorol Climatol 45:1481–1493

    Article  Google Scholar 

  • Mahrt L, Heald R (1983) Nocturnal surface temperature distribution as remotely sensed from low-flying aircraft. Agric Meteorol 28:99–107

    Article  Google Scholar 

  • Mahrt L, Vickers D, Nakamura R, Sun J, Burns S, Lenschow D, Soler M (2001) Shallow drainage and gully flows. Boundary-Layer Meteorol 101:243–260

    Article  Google Scholar 

  • Marak JDK, Rathnam EV, Singh NR, Sudhakar S (2014) Bathymetry generation of Umiam reservoir using SONAR and GIS techniques. Intern J Eng Sci Invent 3(5):20–27

    Google Scholar 

  • Moeng CH, Sullivan PP (1994) A comparison of shear-and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51(7):999–1022

    Article  Google Scholar 

  • Moraes OLL, Acevedo OC, Degrazia GA, Anfossi D, da Silva R, Anabor V (2005) Surface layer turbulence parameters over a complex terrain. Atmos Environ 39:3103–3112

    Article  Google Scholar 

  • Nieuwstadt FTM, Brost RA (1986) The decay of convective turbulence. J Atmos Sci 43:532–546

    Article  Google Scholar 

  • Nilsson E, Lohou F, Lothon M, Pardyjak E, Mahrt L, Darbieu C (2016) Turbulence kinetic energy budget during the afternoon transition—part 1: observed surface TKE budget and boundary layer description for 10 intensive observation period days. Atmos Chem Phys 16:8849–8872. https://doi.org/10.5194/acp-16-8849-2016

    Article  Google Scholar 

  • Orlanski I (1975) A rational subdivision of scales for atmospheric processes. Bull Am Meteorol Soc 56:527–530

    Article  Google Scholar 

  • Papadopoulos KH, Helmis CG (1999) Evening and morning transition of katabatic flows. Boundary-Layer Meteorol 92:195–227

    Article  Google Scholar 

  • Pino D, Vilà-Guerau de Arellano J, Duynkerke P (2003) The contribution of shear to the evolution of a convective boundary layer. J Atmos Sci 60:1913–1926

    Article  Google Scholar 

  • Pino D, Jonker HJJ, Vilà de Arellano J, Dosio A (2006) Role of shear and the inversion strength during sunset turbulence over land: characteristic length scales. Boundary-Layer Meteorol 121:537–556

    Article  Google Scholar 

  • Rai KR, Berg LK, Pekour M, Shaw WJ, Kosovic B, Mirocha JD, Ennis BL (2017) Spatio-temporal variability of turbulence kinetic energy budgets in the convective boundary layer over both simple and complex terrain. J Appl Meteorol Climatol. https://doi.org/10.1175/JAMC-D-17-0124.1

    Google Scholar 

  • Rizza U, Miglietta M, Degrazia G, Acevedo O, Marques E (2013) Sunset decay of the convective turbulence with large-eddy simulation under realistic conditions. Physica A 392:4481–4490

    Article  Google Scholar 

  • Rotach MW, Zardi D (2007) On the boundary-layer structure over highly complex terrain: key findings from MAP. Q J R Meteorol Soc 133:937–948. https://doi.org/10.1002/qj.71

    Article  Google Scholar 

  • Sarthi PP (2015) Study of turbulence kinetic energy budget over Jodhpur, India. J Environ Soc Sci 2(1):104–110

    Google Scholar 

  • Sghiatti MD (2016) The spatial variability and structure of turbulent kinetic energy in the convective boundary layer over an isolated mountain. MS thesis, University of Virginia

  • Singh N, Solanki R, Ojha N, Janssen RHH, Pozzer A, Dhaka SK (2016) Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations. Atmos Chem Phys 16:10559–10572. https://doi.org/10.5194/acp-16-10559-2016

    Article  Google Scholar 

  • Solanki R, Singh N, Kiran Kumar NVP, Rajeev K, Dhaka SK (2016) Time variability of surface-layer characteristics over a mountain ridge in the central himalayas during the spring season. Boundary-Layer Meteorol 158:453–471. https://doi.org/10.1007/s10546-015-0098-5

    Article  Google Scholar 

  • Sorbjan Z (1997) Decay of convective turbulence revisited. Boundary-Layer Meteorol 82:501–515

    Article  Google Scholar 

  • Srivastava MK, Sarthi PP (2002) Turbulent kinetic energy in the atmospheric surface layer during the summer monsoon. Meteorol Appl 9:239–246. https://doi.org/10.1017/S1350482702002098

    Article  Google Scholar 

  • Stewart JQ, Whiteman CD, Steenburgh WJ, Bian X (2002) A climatological study of thermally driven wind systems of the U.S. Intermountain West. Bull Am Meteorol Soc 83:699–708

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • van Driel R, Jonker HJJ (2011) Convective boundary layers driven by non-stationary surface heat fluxes. J Atmos Sci 68:727–738

    Article  Google Scholar 

  • Vickers D, Mahrt L (2006) A solution for flux contamination by mesoscale motions with very weak turbulence. Boundary-Layer Meteorol 118:431–447

    Article  Google Scholar 

  • Weigel AP, Chow FK, Rotach MW (2007a) The effect of mountainous topography on moisture exchange between the surface and the free atmosphere. Boundary-layer Meteorol 125(2):227–244

    Article  Google Scholar 

  • Weigel AP, Chow FK, Rotach MW (2007b) On the nature of turbulent kinetic energy in a steep and narrow alpine valley. Boundary-layer Meteorol 123(1):177–199

    Article  Google Scholar 

  • Whiteman CD (2000) Mountain meteorology fundamentals and applications. Oxford University Press, New York

    Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150

    Article  Google Scholar 

  • Wyngaard J, Coté O (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28(2):190–201

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out as part of the IGBP-NOBLE project. We thank the Director Space Physics Laboratory, and Project Director, ISRO-IGBP program office, ISRO for their valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilamoni Barman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, N., Borgohain, A., Kundu, S.S. et al. Daytime Temporal Variation of Surface-Layer Parameters and Turbulence Kinetic Energy Budget in Topographically Complex Terrain Around Umiam, India. Boundary-Layer Meteorol 172, 149–166 (2019). https://doi.org/10.1007/s10546-019-00443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-019-00443-6

Keywords

Navigation