Skip to main content
Log in

Lidar Observations of the Typhoon Boundary Layer Within the Outer Rainbands

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The typhoon boundary layer within the two super typhoons Dujuan and Soudelor is observed using ground-based Doppler lidar up to a height of 240 m, and primarily in the outer rain-bands. The mean wind-speed profiles are analyzed over 1-h intervals and two longer intervals, representing the stages of the typhoons’ approach and departure, respectively. In agreement with surface-layer parametrizations related to finite mixing-length theory, the hourly mean wind-speed profiles demonstrate that the scaling parameter \(u_{*o}\)/fc, where \(u_{*o}\) denotes the surface friction velocity, and fc denotes the Coriolis parameter, determines the depth the surface layer, and governs the boundary-layer formation in the mixed layer. With large values of \(u_{*o}\)/fc, the dominance of surface friction extends the logarithmic layer to the uppermost level of the present observations. In contrast, with small \(u_{*o}\)/fc values, the effect of the Coriolis parameter increases the wind speed with respect to the logarithmic profile above the surface layer. That the averaged wind-speed profiles may be described by finite mixing-length theory, the empirical Deaves and Harris model, as well as the power-law profile, suggest these approaches are appropriate for simulations of the typhoon boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aitken ML, Rhodes ME, Lundquist JK (2012) Performance of a wind-profiling lidar in the region of wind turbine rotor disks. J Atmos Ocean Technol 29:347–354

    Article  Google Scholar 

  • Amano T, Fukushima H, Ohkuma T, Kawaguchi A, Goto S (1999) The observation of typhoon winds in Okinawa by Doppler sodar. J Wind Eng Ind Aerodyn 83:11–20

    Article  Google Scholar 

  • Bendat JS, Piersol AG (1982) Random data: analysis and measurement procedures. Wiley, New York, p 624

    Google Scholar 

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67:3095–3102

    Article  Google Scholar 

  • Carl DM, Tarbell TC, Panofsky HA (1973) Profiles of wind and temperature from towers over homogeneous Terrain. J Atmos Sci 30:788–794

    Article  Google Scholar 

  • Cariou JP (2011) Pulsed lidars. In: Peña A and Hasager CB (eds) Remote sensing for wind energy. Technical University of Demark, Risøreport Risø-I-3184(EN), pp 65–81

  • Chien FC, Liu YC, Lee CS (2008) Heavy rainfall and southwesterly flow after the leaving of typhoon Mindulle (2004) from Taiwan. J Meteorol Soc Jpn 86:17–41

    Article  Google Scholar 

  • Chien H, Cheng HY, Yan KH, Tsai YH, Chang WT (2014) Diurnal and semidiurnal variability of coastal wind over Taiwanese waters. Wind Energy 18:1353–1370

    Article  Google Scholar 

  • Choi ECC (1978) Characteristics of typhoons over the South China Sea. J Wind Eng Ind Aerodyn 3:353–365

    Article  Google Scholar 

  • Choi ECC (2009) Proposal for unified terrain categories exposures and velocity profiles. In: 7th Asia-Pacific conference on wind engineering, 8–12 Nov 2009, Taipei, Taiwan

  • Chou JS, Tu WT (2011) Failure analysis and risk management of collapsed large wind turbine tower. Eng Fail Anal 18:295–313

    Article  Google Scholar 

  • Chou JS, Chiu CK, Huang IK, Chi KN (2013) Failure analysis of wind turbine blade under critical wind loads. Eng Fail Anal 27:99–118

    Article  Google Scholar 

  • Deaves DM, Harris RI (1978) A mathematical model of the structure of strong winds. CIRIA Report 76, UK

  • Drew DR, Barlow JF, Lane SE (2013) Observations of wind speed profiles over Greater London, UK, using a Doppler Lidar. J Wind Eng Ind Aerodyn 121:98–105

    Article  Google Scholar 

  • ESCAP (2017) Report of the typhoon committee, E/ESCAP/73/INF/3/Rev.1

  • Geernaert GL, Katsaros KB, Richter K (1986) Variation of the drag coefficient and its dependence on sea state. J Geophys Res 91:7667–7679

    Article  Google Scholar 

  • Gryning SE, Batchvarova E, Brummer B, Jørgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface layer. Boundary-Layer Meteorol 124:251–268

    Article  Google Scholar 

  • Houze RA (2010) Clouds in tropical cyclones. Mon Weather Rev 138:293–344

    Article  Google Scholar 

  • Hsu SA (1972) Boundary-layer trade-wind profile and stress on a tropical windward coast. Boundary-Layer Meteorol 2:284–289

    Article  Google Scholar 

  • Hsu SA (2003) Estimating overwater friction velocity and exponent of power-law wind profile from gust factor during storms. J Waterw Port Coast Ocean Eng 129:174–177

    Article  Google Scholar 

  • Huang NE, Zheng S, Long SR, Manli CW, Shin HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond 454:903–995

    Article  Google Scholar 

  • International Electrotechnical Commission (2005) IEC 61400-1, Ed. 3: wind turbines—part 1: design requirements, Geneva

  • Ishizaki H (1983) Wind profiles turbulence intensities and gust factors for design in typhoon-prone regions. J Wind Eng Ind Aerodyn 13:55–66

    Article  Google Scholar 

  • Pan CJ, Reddy KK, Lai HC, Yang SS, Wong CJ (2010) Wind profiler observations on orographic effects of typhoon wind structure modification over Taiwan (120.38° E, 22.6° N). Ann Geophys 28:141–147

    Article  Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley, New York, p 397

    Google Scholar 

  • Peña A, Gryning SE (2008) Charnock’s roughness length model and non-dimensional wind profiles over the sea. Boundary-Layer Meteorol 128:191–203

    Article  Google Scholar 

  • Peña A, Gryning SE, Mann J, Hasager CB (2010) Length scale of the neutral wind profile over homogeneous terrain. J Appl Meteorol Climatol 49:792–806

    Article  Google Scholar 

  • Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283

    Article  Google Scholar 

  • Song L, Chen W, Wang B, Zhi S, Liu A (2016) Characteristics of wind profiles in the landfalling typhoon boundary layer. J Wind Eng Ind Aerodyn 149:77–88

    Article  Google Scholar 

  • Smith RK, Montgomery MT (2014) On the existence of the logarithmic surface layer in the inner core of hurricanes. Q J R Meteorol Soc 140:72–81

    Article  Google Scholar 

  • Tamura Y, Suda K, Sasaki A, Miyashita K, Iwatani Y, Maruyama T, Hibi K, Ishibashi R (2001) Simultaneous wind measurements over two sites using Doppler sodars. J Wind Eng Ind Aerodyn 89:1647–1656

    Article  Google Scholar 

  • Tamura Y, Iwatani Y, Hibi K, Suda K, Nakamura O, Maruyama T, Ishibashi R (2007) Profiles of mean wind speeds and vertical turbulence intensities measured at seashore and two inland sites using Doppler sodars. J Wind Eng Ind Aerodyn 95:411–427

    Article  Google Scholar 

  • Tennekes H (1973) The logarithmic wind profile. J Atmos Sci 30:234–238

    Article  Google Scholar 

  • Tieleman HW (2008) Strong wind observations in the atmospheric surface layer. J Wind Eng Ind Aerodyn 96:41–77

    Article  Google Scholar 

  • Tsai YS, Yang YC, Chang WT, Yang WC, Lin PH, Chen JL (2017) Wind speed profiles of typhoon Matmo observed using Doppler Lidar. J Coast Ocean Eng 17:1–20

    Google Scholar 

  • Tsai YS, Chang WT, Yu CM, Yang WC (2018) General sea state and drag coefficient observed near shore in Taiwan Strait. Procedia IUTAM 26:204–213

    Article  Google Scholar 

  • Tse KT, Li SW, Chan PW, Mok HY, Weerasuriya AU (2013) Wind profile observations in tropical cyclone events using wind-profilers and doppler SODARs. J Wind Eng Ind Aerodyn 115:93–103

    Article  Google Scholar 

  • Vickery PJ, Wadhera D, Powell MD, Chen Y (2009) A Hurricane boundary layer and wind field model for use in engineering application. J Appl Meteorol Clim 48:381–405

    Article  Google Scholar 

  • Von der Hoven I (1957) Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J Meteorol 14:160–164

    Article  Google Scholar 

  • Wu CK, Kuo YH (1999) Typhoons affecting Taiwan: current understanding and future challenges. Bull Am Meteorol Soc 80:67–80

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their acknowledgement to the Ministry of Science and Technology for project funding (MOST 105-3113-E-006-016-CC2 and MOST 107-3113-F006-002). We are also indebted to the Central Weather Bureau and Water Resources Agency in Taiwan for use of the buoy and meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Shiang Tsai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, YS., Miau, JJ., Yu, CM. et al. Lidar Observations of the Typhoon Boundary Layer Within the Outer Rainbands. Boundary-Layer Meteorol 171, 237–255 (2019). https://doi.org/10.1007/s10546-019-00427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-019-00427-6

Keywords

Navigation