Skip to main content
Log in

The Hurst Phenomenon in Error Estimates Related to Atmospheric Turbulence

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The Hurst phenomenon is a well-known feature of long-range persistence first observed in hydrological and geophysical time series by E. Hurst in the 1950s. It has also been found in several cases in turbulence time series measured in the wind tunnel, the atmosphere, and in rivers. Here, we conduct a systematic investigation of the value of the Hurst coefficient H in atmospheric surface-layer data, and its impact on the estimation of random errors. We show that usually \(H > 0.5\), which implies the non-existence (in the statistical sense) of the integral time scale. Since the integral time scale is present in the Lumley–Panofsky equation for the estimation of random errors, this has important practical consequences. We estimated H in two principal ways: (1) with an extension of the recently proposed filtering method to estimate the random error (\(H_p\)), and (2) with the classical rescaled range introduced by Hurst (\(H_R\)). Other estimators were tried but were found less able to capture the statistical behaviour of the large scales of turbulence. Using data from three micrometeorological campaigns we found that both first- and second-order turbulence statistics display the Hurst phenomenon. Usually, \(H_R\) is larger than \(H_p\) for the same dataset, raising the question that one, or even both, of these estimators, may be biased. For the relative error, we found that the errors estimated with the approach adopted by us, that we call the relaxed filtering method, and that takes into account the occurrence of the Hurst phenomenon, are larger than both the filtering method and the classical Lumley–Panofsky estimates. Finally, we found that there is no apparent relationship between H and the Obukhov stability parameter. The relative errors, however, do show stability dependence, particularly in the case of the error of the kinematic momentum flux in unstable conditions, and that of the kinematic sensible heat flux in stable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alvarez-Ramirez J, Alvarez J, Rodriguez E, Fernandez-Anaya G (2008) Time-varying hurst exponent for us stock markets. Physica A 387(24):6159–6169

    Article  Google Scholar 

  • Andreas EL, Treviño G (1997) Using wavelets to detect trends. J Atmos Ocean Technol 14(3):554–564

    Article  Google Scholar 

  • Aubinet M, Vesala T, Papale D (2012) Eddy covariance. A practical guide to measurement and data analysis. Springer, Heidelberg

    Google Scholar 

  • Bendat JS, Piersol AG (2010) Random data, 4th edn. Wiley, New York

    Book  Google Scholar 

  • Beran J (1989) A test of location for data with slowly decaying serial correlatoins. Biometrika 76(2):261–269

    Article  Google Scholar 

  • Bernardes M, Dias NL (2010) The alignment of the mean wind and stress vectors in the unstable surface layer. Boundary-Layer Meteorol 134:41–59. https://doi.org/10.1007/s10546-009-9429-8

    Article  Google Scholar 

  • Bisaglia L, Guégan D (1998) A comparision of techniques of estimation in long-memory processes. Comput Stat Data Anal 27:61–81

    Article  Google Scholar 

  • Boes DC, Salas JD (1978) Nonstationarity of the mean and the hurst phenomenon. Water Resour Res 14(1):135–143

    Article  Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis forecasting and control. Prentice-Hall, New York

    Google Scholar 

  • Burlando P, Montanari A, Rosso R (1996) Modelling hydrological data with and without long memory. Meccanica 31:87–101

    Article  Google Scholar 

  • Caccia DC, Percival D, Cannon MJ, Raymond G, Bassinghtwaighte JB (1997) Analyzing exact fractal time series: evaluating dispersional analysis and rescaled range methods. Physica A 246(3–4):609–632

    Article  Google Scholar 

  • Cancelli DM, Chamecki M, Dias NL (2014) A large-eddy simulation study of scalar dissimilarity in the convective atmospheric boundary layer. J Atmos Sci 71(1):3–15. https://doi.org/10.1175/JAS-D-13-0113.1

    Article  Google Scholar 

  • Chamecki M, Dias NL, Salesky ST, Pan Y (2017) Scaling laws for the longitudinal structure function in the atmospheric surface layer. J Atmos Sci 74(4):1127–1147. https://doi.org/10.1175/JAS-D-16-0228.1

    Article  Google Scholar 

  • Chamoli A, Bansal AR, Dimri V (2007) Wavelet and rescaled range approach for the Hurst coefficient for short and long time series. Comput Geosci 33(1):83–93

    Article  Google Scholar 

  • Coeurjolly JF (2000) Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study. J Stat Softw 5:7

    Article  Google Scholar 

  • Crivellaro BL, Dias NL, Chor T (2013) Spectral effects on scalar correlations and fluxes. Am J Environ Eng 3:3–17. https://doi.org/10.5923/j.ajee.20130301.03

    Google Scholar 

  • Davidson PA, Krogstad P (2014) A universal scaling for low-order structure functions in the log-law region of smooth- and rough-wall boundary layers. J Fluid Mech 752:140–156. https://doi.org/10.1017/jfm.2014.286

    Article  Google Scholar 

  • de Silva CM, Marusic I, Woodcock JD, Meneveau C (2015) Scaling of second- and higher-order structure functions in turbulent boundary layers. J Fluid Mech 769:654–686. https://doi.org/10.1017/jfm.2015.122

    Article  Google Scholar 

  • Dias NL (2017) Smoothed spectra, ogives, and error estimates for atmospheric turbulence data. Boundary-Layer Meteorol 166(1):1–29. https://doi.org/10.1007/s10546-017-0293-7

    Article  Google Scholar 

  • Dias NL, Chamecki M, Kan A, Okawa CMP (2004) A study of spectra, structure and correlation functions and their implication on the stationarity of surface-layer turbulence. Boundary-Layer Meteorol 110:165–189. https://doi.org/10.1023/A:1026067224894

    Article  Google Scholar 

  • Dias NL, Crivellaro BL, Armani FS, Chor TL, Gobbi MF, Santos AL (2013) Abstract b32a-03. Short-term eddy-covariance measurements of \(\text{CO}_2\) fluxes at Itaipu Lake, Brazil. In: Meeting of the Americas, Cancún, Mexico, May 2013

  • Garcia C, Jackson P, Garcia M (2006) Confidence intervals in the determination of turbulent parameters. Exp Fluids 40(4):514–522

    Article  Google Scholar 

  • Gilmore M, Yu C, Rhodes T, Peebles W (2002) Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence. Phys Plasma 9(4):1312–1317

    Article  Google Scholar 

  • Gluhovsky A, Agee E (1994) A definitive approach to turbulence statistical studies in planetary boundary layers. J Atmos Sci 51(12):1682–1690

    Article  Google Scholar 

  • Grech D, Mazur Z (2004) Can one make any crash prediction in finance using the local hurst exponent idea? Physica A 336(1):133–145

    Article  Google Scholar 

  • Grech D, Pamuła G (2008) The local hurst exponent of the financial time series in the vicinity of crashes on the polish stock exchange market. Physica A 387(16):4299–4308

    Article  Google Scholar 

  • Hamed KH (2007) Improved finite-sample Hurst exponent estimates using rescaled range analysis. Water Resour Res 43:1–9

    Article  Google Scholar 

  • Helland KN, van Atta CW (1978) The ‘Hurst phenomenon’ in grid turbulence. J Fluid Mech 85:573–589

    Article  Google Scholar 

  • Howell JF, Mahrt L (1997) Multiresolution flux decomposition. Boundary-Layer Meteorol 83:117–137

    Article  Google Scholar 

  • Hurst HE (1951) Long term storage capacity of reservoirs. Trans ASCE 116:776–808

    Google Scholar 

  • Katul G, Vidakovic B, Albertson J (2001) Estimating global and local scaling exponents in turbulent flows using discrete wavelet transformations. Phys Fluids 13(1):241–250

    Article  Google Scholar 

  • Klemes V (1974) The hurst phenomenom: a puzzle? Water Resour Res 10(4):675–688

    Article  Google Scholar 

  • Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc USSR Acad Sci 30:299–303 (in Russian)

    Google Scholar 

  • Koutsoyiannis D (2002) The Hurst phenomenon and fractional Gaussian noise made easy. Hydrol Sci J 47(4):573–595

    Article  Google Scholar 

  • Laushey LM (1951) Discussion of ‘long-term storage capacity of reservoirs’ by H. E. Hurst. Trans ASCE 116:803–804

    Google Scholar 

  • Lee X, Massman W, Law B (2004) Handbook of micrometeorology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Liepmann H (1952) Aspects of the turbulence problem. Z Angew Math Phys 3(5):321–342. https://doi.org/10.1007/BF02008148

    Article  Google Scholar 

  • Lumley JL, Panofksy HA (1964) The structure of atmospheric turbulence. Interscience, New York

    Google Scholar 

  • Mandelbrot B (1965) Une classe de processus stochastiques homothétiques á soi; application á la loi climatologique de H. E. Hurst. C R Acad Sci (Paris) 260(1):3274–3277 (in French)

    Google Scholar 

  • Mandelbrot BB, van Ness JW (1968) Fractional brownian motions, fractional noises and applications. SIAM Rev 10(4):422–437

    Article  Google Scholar 

  • Mandelbrot BB, Wallis JR (1968) Noah, joseph, and operational hydrology. Water Resour Res 4(5):909–918. https://doi.org/10.1029/WR004i005p00909

    Article  Google Scholar 

  • Montanari A, Rosso R, Taqqu MS (1997) Fractionally differenced ARIMA models applied to hydrologic time series: identification, estimation and simulation. Water Resour Res 33(5):1035–1044

    Article  Google Scholar 

  • Montgomery DC, Runger GC (2011) Applied statistics and probability for engineers, 3rd edn. Wiley, New York

    Google Scholar 

  • Nordin CF, McQuivey RS, Mejia J (1972) Hurst phenomenon in turbulence. Water Resour Res 8(6):1480–1486

    Article  Google Scholar 

  • Pan Y, Chamecki M, Isard SA (2014) Large-eddy simulation of turbulence and particle dispersion inside the canopy roughness sublayer. J Fluid Mech 753:499–534. https://doi.org/10.1017/jfm.2014.379

    Article  Google Scholar 

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49(2):1685–1689

    Article  Google Scholar 

  • Perry AE, Henbest S, Chong MS (1986) A theoretical and experimental study of wall turbulence. J Fluid Mech 165:163–199

    Article  Google Scholar 

  • Potter KW (1976) Evidence for nonstationarity as a physical explanation of the Hurst phenomenon. Water Resour Res 12(5):1047–1052

    Article  Google Scholar 

  • Salesky ST, Chamecki M (2012) Random errors in turbulence measurements in the atmospheric surface layer: implications for Monin–Obukhov similarity theory. J Atmos Sci 69:3700–3714

    Article  Google Scholar 

  • Salesky ST, Chamecki M, Dias NL (2012) Estimating the random error in eddy-covariance fluxes and other turbulence statistics: the filtering method. Boundary-Layer Meteorol 144:113–135. https://doi.org/10.1007/s10546-012-9710-0

    Article  Google Scholar 

  • Shi B, Vidakovic B, Katul GG, Albertson JD (2005) Assessing the effects of atmospheric stability on the fine structure of surface layer turbulence using local and global multiscale approaches. Phys Fluids 17(5):055104-1–055104-12

    Article  Google Scholar 

  • Simonsen I, Hansen A, Nes OM (1998) Determination of the hurst exponent by use of wavelet transforms. Phys Rev E 58(3):2779–2787

    Article  Google Scholar 

  • Sutton OG (1932) A theory of eddy diffusion in the atmosphere. Proc R Soc Lond A 135:143–165. https://doi.org/10.1098/rspa.1932.0025

    Article  Google Scholar 

  • Taqqu MS, Teverovsky V, Willinger W (1995) Estimators for long-range dependence: an empirical study. Fractals 3(4):785–798

    Article  Google Scholar 

  • Taylor GI (1935) Statistical theory of turbulence. Proc R Soc Lond A 151:421–444

    Article  Google Scholar 

  • UCAR/NCAR-Earth Observing Laboratory (1990) NCAR integrated surface flux system. NCAR/Earth Observing Laboratory, Boulder. https://doi.org/10.5065/D6ZC80XJ

    Google Scholar 

  • Vandewalle N, Ausloos M (1997) Coherent and random sequences in financial fluctuations. Physica A 246(3–4):454–459

    Article  Google Scholar 

  • Vergassola M, Benzi R, Biferale L, Pisarenko D (1993) Wavelet analysis of a Gaussian Kolmogorov signal. J Phys A 26(22):6093–6099

    Article  Google Scholar 

  • Wyngaard JC (1973) On surface-layer turbulence. In: Haugen DA (ed) Workshop on micrometeorology. American Meteorological Society, Boston, pp 101–149

    Google Scholar 

  • Yaglom AM (1987) Correlation theory of stationary and related random functions I: Basic results. Springer, New York

    Google Scholar 

  • Yu C, Gilmore M, Peebles W, Rhodes T (2003) Structure function analysis of long-range correlations in plasma turbulence. Phys Plasma 10(7):2772–2779

    Article  Google Scholar 

  • Zahn E, Chor TL, Dias NL (2016) A simple methodology for quality control of micrometeorological datasets. Am J Environ Eng 6(4A):135–142. https://doi.org/10.5923/s.ajee.201601.20

    Google Scholar 

Download references

Acknowledgements

The AHATS data were collected by NCAR’s Integrated Surface Flux Facility. The Itaipu Lake measurements were funded by research Project FUNPAR 2882, with funding provided by CHESF (São Francisco Hydroelectric Company). We thank Tomás Chor for help with data quality control using PyMicra (https://github.com/tomchor/pymicra). We thank Brazil’s CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for B.L. Crivellaro’s Ph.D. Scholarship, and Brazil’s CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for partial support through Grants and 303581/2013-1 and 401146/2014-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Luís Dias.

Appendices

Appendix 1 The Cases \(q=1\) and \(q=2\)

When \(q=1\), substitution of (14) into (12) yields

$$\begin{aligned} I&= \alpha _1{\mathscr {T}}_H + \int _{{\mathscr {T}}_H}^{{\Delta }} k \left( \frac{\eta }{{\Delta }}\right) ^{-1}\,\mathrm{d}\eta - \int _{{\mathscr {T}}_H}^{{\Delta }} \frac{k}{{\Delta }}\eta \left( \frac{\eta }{{\Delta }}\right) ^{-1}\,\mathrm{d}\eta \nonumber \\&= {\mathscr {T}}_H\left[ (\alpha _1 - k) + k\ln \left( \frac{{\Delta }}{{\mathscr {T}}_H}\right) + k\left( \frac{{\mathscr {T}}_H}{{\Delta }}\right) \right] , \end{aligned}$$
(28)
$$\begin{aligned} { MSE}({\widetilde{x}}_{\Delta })&= \frac{2{\mathscr {T}}_H}{{\Delta }}\left[ (\alpha _1 - k) + k\ln \left( \frac{{\Delta }}{{\mathscr {T}}_H}\right) + k\left( \frac{{\mathscr {T}}_H}{{\Delta }}\right) \right] { Var}\{x\}\nonumber \\&\sim (2{\mathscr {T}}_H/{\Delta })\ln ({\Delta }/{\mathscr {T}}_H){ Var}\{x\} \end{aligned}$$
(29)

for \({\Delta } \gg {\mathscr {T}}_H\). When \(q=2\), substitution of (14) into (12) yields

$$\begin{aligned} I&= \alpha _1{\mathscr {T}}_H + \int _{{\mathscr {T}}_H}^{{\Delta }} k \left( \frac{\eta }{{\Delta }}\right) ^{-2}\,d\eta - \int _{{\mathscr {T}}_H}^{{\Delta }} \frac{k}{{\Delta }}\eta \left( \frac{\eta }{{\Delta }}\right) ^{-2}\,\mathrm{d}\eta \nonumber \\&= {\mathscr {T}}_H\left[ (\alpha _1 + k) - k\left( \frac{{\mathscr {T}}_H}{{\Delta }}\right) + k\left( \frac{{\mathscr {T}}_H}{{\Delta }}\right) \ln \left( \frac{{\mathscr {T}}_H}{{\Delta }}\right) +\right] , \end{aligned}$$
(30)
$$\begin{aligned} { MSE}({\widetilde{x}}_{\Delta })&= \frac{2{\mathscr {T}}_H}{{\Delta }}\left[ (\alpha _1 + k) - k\left( \frac{{\mathscr {T}}_H}{{\Delta }}\right) + k\left( \frac{{\mathscr {T}}_H}{{\Delta }}\right) \ln \left( \frac{{\mathscr {T}}_H}{{\Delta }}\right) \right] { Var}\{x\}\nonumber \\&\sim \frac{2{\mathscr {T}}_H}{{\Delta }}{ Var}\{ x\} \end{aligned}$$
(31)

for \({\Delta } \gg {\mathscr {T}}_H\).

Appendix 2 A Test for Changing Variance

Consider a discretized dataset corresponding to \(30\,\mathrm {min}\) at 20 Hz, with \(N = 36{,}000\) data points \(x_0, x_1, \ldots , x_{N-1}\). A running mean and running variance with window D are defined as

$$\begin{aligned} {\widetilde{x}}_{D}(k)&= \frac{1}{D}\sum _{i=k}^{k+D-1} x_i, \end{aligned}$$
(32)
$$\begin{aligned} \widetilde{{ Var}(x)}_{D}(k)&= \frac{1}{D}\sum _{i=k}^{k+D-1} \left( x_i -{\widetilde{x}}_{D}(k)\right) ^2, \end{aligned}$$
(33)

and the ratio of the largest to the smallest \(\widetilde{{ Var}(x)}_{D}(k)\) values over all k is then calculated. The measurement period is rejected when this ratio is larger than r. We used \(D=4800\) and \(r=5\) for u and v, \(D=2400\) and \(r=3\) for w and \(D=2400\) and \(r=4\) for \(\theta \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, N.L., Crivellaro, B.L. & Chamecki, M. The Hurst Phenomenon in Error Estimates Related to Atmospheric Turbulence. Boundary-Layer Meteorol 168, 387–416 (2018). https://doi.org/10.1007/s10546-018-0353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-018-0353-7

Keywords

Navigation