Skip to main content
Log in

A Backward-Lagrangian-Stochastic Footprint Model for the Urban Environment

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Built terrains, with their complexity in morphology, high heterogeneity, and anthropogenic impact, impose substantial challenges in Earth-system modelling. In particular, estimation of the source areas and footprints of atmospheric measurements in cities requires realistic representation of the landscape characteristics and flow physics in urban areas, but has hitherto been heavily reliant on large-eddy simulations. In this study, we developed physical parametrization schemes for estimating urban footprints based on the backward-Lagrangian-stochastic algorithm, with the built environment represented by street canyons. The vertical profile of mean streamwise velocity is parametrized for the urban canopy and boundary layer. Flux footprints estimated by the proposed model show reasonable agreement with analytical predictions over flat surfaces without roughness elements, and with experimental observations over sparse plant canopies. Furthermore, comparisons of canyon flow and turbulence profiles and the subsequent footprints were made between the proposed model and large-eddy simulation data. The results suggest that the parametrized canyon wind and turbulence statistics, based on the simple similarity theory used, need to be further improved to yield more realistic urban footprint modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akselvoll K, Moin P (2014) Large eddy simulation of a backward facing step flow. Eng Turbul Model Exp 2:303–313

    Google Scholar 

  • Allegrini J, Dorer V, Carmeliet J (2014) Buoyant flows in street canyons: validation of CFD simulations with wind tunnel measurements. Build Environ 72:63–74

    Article  Google Scholar 

  • Arya PS (2001) Introduction to micrometeorology. Academic Press, San Diego

    Google Scholar 

  • Aubinet M, Vesala T, Papale D (eds) (2012) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, p 438

    Google Scholar 

  • Belcher S, Jerram N, Hunt J (2003) Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech 488:369–398

    Article  Google Scholar 

  • Bottema M (1997) Urban roughness modelling in relation to pollutant dispersion. Atmos Environ 31:3059–3075

    Article  Google Scholar 

  • Bou-Zeid E (2015) Challenging the large eddy simulation technique with advanced a posteriori tests. J Fluid Mech 764:1–4

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange M (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17:025105

    Article  Google Scholar 

  • Britter R, Hanna S (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35:469–496

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Cai X, Chen J, Desjardins RL (2010) Flux footprints in the convective boundary layer: large-eddy simulation and lagrangian stochastic modelling. Boundary-Layer Meteorol 137:31–47

    Article  Google Scholar 

  • Cai X, Leclerc MY (2007) Forward-in-time and backward-in-time dispersion in the convective boundary layer: the concentration footprint. Boundary-Layer Meteorol 123:201–218

    Article  Google Scholar 

  • Cai X, Peng G, Guo X, Leclerc MY (2008) Evaluation of backward and forward Lagrangian footprint models in the surface layer. Theor Appl Climatol 93:207–223

    Article  Google Scholar 

  • Cai X-M (2012) Effects of wall heating on flow characteristics in a street canyon. Boundary-Layer Meteorol 142:443–467

    Article  Google Scholar 

  • Chang C-H, Meroney RN (2003) Concentration and flow distributions in urban street canyons: wind tunnel and computational data. J Wind Eng Ind Aerodyn 91:1141–1154

    Article  Google Scholar 

  • Chen B, Coops NC, Fu D, Margolis HA, Amiro BD, Barr AG, Black TA, Arain MA, Bourque CPA, Flanagan LB, Lafleur PM, McCaughey JH, Wofsy SC (2011) Assessing eddy-covariance flux tower location bias across the Fluxnet-Canada research network based on remote sensing and footprint modelling. Agric For Meteorol 151:87–100

    Article  Google Scholar 

  • Chester S, Meneveau C, Parlange MB (2007) Modeling turbulent flow over fractal trees with renormalized numerical simulation. J Comput Phys 225:427–448

    Article  Google Scholar 

  • Coceal O, Dobre A, Thomas TG, Belcher SE (2007) Structure of turbulent flow over regular arrays of cubical roughness. J Fluid Mech 589:375–409

    Article  Google Scholar 

  • Eliasson I, Offerle B, Grimmond C, Lindqvist S (2006) Wind fields and turbulence statistics in an urban street canyon. Atmos Environ 40:1–16

    Article  Google Scholar 

  • Flesch TK (1996) The footprint for flux measurements, from backward Lagrangian stochastic models. Boundary-Layer Meteorol 78:399–404

    Article  Google Scholar 

  • Flesch TK, Wilson JD, Yee E (1995) Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions. J Appl Meteorol 34:1320–1332

    Article  Google Scholar 

  • Glazunov A, Rannik Ü, Stepanenko V, Lykosov V, Auvinen M, Vesala T, Mammarella I (2016) Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer. Geosci Model Dev 9:2925–2949

    Article  Google Scholar 

  • Grimmond C, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292

    Article  Google Scholar 

  • Harman IN, Barlow JF, Belcher SE (2004) Scalar fluxes from urban street canyons. part II: model. Boundary-Layer Meteorol 113:387–410

    Article  Google Scholar 

  • Hellsten A, Luukkonen S-M, Steinfeld G, Kanani-Sühring F, Markkanen T, Järvi L, Lento J, Vesala T, Raasch S (2015) Footprint evaluation for flux and concentration measurements for an urban-like canopy with coupled Lagrangian stochastic and large-eddy simulation models. Boundary-Layer Meteorol 157:191–217

    Article  Google Scholar 

  • Horst T, Weil JC (1994) How far is far enough?: The fetch requirements for micrometeorological measurement of surface fluxes. J Atmos Ocean Technol 11:1018–1025

    Article  Google Scholar 

  • Horst T, Weil JC (1992) Footprint estimation for scalar flux measurements in the atmospheric surface layer. Boundary-Layer Meteorol 59:279–296

    Article  Google Scholar 

  • Hsieh C-I, Katul G (2009) The Lagrangian stochastic model for estimating footprint and water vapor fluxes over inhomogeneous surfaces. Int J Biometeorol 53:87–100

    Article  Google Scholar 

  • Hsieh C-I, Katul G, Chi T (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772

    Article  Google Scholar 

  • Kljun N, Calanca P, Rotach M, Schmid H (2015) A simple two-dimensional parameterisation for flux footprint prediction (FFP). Geosci Model Dev 8:3695–3713

    Article  Google Scholar 

  • Kljun N, Calanca P, Rotach M, Schmid H (2004) A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorol 112:503–523

    Article  Google Scholar 

  • Kljun N, Kormann R, Rotach MW, Meixer FX (2003) Comparison of the Langrangian footprint. Boundary-Layer Meteorol 106:349–355

    Article  Google Scholar 

  • Kljun N, Rotach M, Schmid H (2002) A three-dimensional backward Lagrangian footprint model for a wide range of boundary-layer stratifications. Boundary-Layer Meteorol 103:205–226

    Article  Google Scholar 

  • Kondo H, Genchi Y, Kikegawa Y, Ohashi Y, Yoshikado H, Komiyama H (2005) Development of a multi-layer urban canopy model for the analysis of energy consumption in a big city: structure of the urban canopy model and its basic performance. Boundary-Layer Meteorol 116:395–421

    Article  Google Scholar 

  • Kondo H, Tokairin T, Kikegawa Y (2008) Calculation of wind in a Tokyo urban area with a mesoscale model including a multi-layer urban canopy model. J Wind Eng Ind Aerodyn 96:1655–1666

    Article  Google Scholar 

  • Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol 99:207–224

    Article  Google Scholar 

  • Kota SH, Park C, Hale MC, Werner ND, Schade GW, Ying Q (2014) Estimation of VOC emission factors from flux measurements using a receptor model and footprint analysis. Atmos Environ 82:24–35

    Article  Google Scholar 

  • Laubach J, Kelliher FM (2005) Measuring methane emission rates of a dairy cow herd (II): results from a backward-Lagrangian stochastic model. Agric For Meteorol 129:137–150

    Article  Google Scholar 

  • Leclerc M, Meskhidze N, Finn D (2003) Comparison between measured tracer fluxes and footprint model predictions over a homogeneous canopy of intermediate roughness. Agric For Meteorol 117:145–158

    Article  Google Scholar 

  • Leclerc M, Thurtell G (1990) Footprint prediction of scalar fluxes using a Markovian analysis. Boundary-Layer Meteorol 52:247–258

    Article  Google Scholar 

  • Leclerc MY, Shen S, Lamb B (1997) Observations and large-eddy simulation modeling of footprints in the lower convective boundary layer. J Geophys Res Atmos 102:9323–9334

    Article  Google Scholar 

  • Lee RL, Naslund E (1998) Lagrangian stochastic particle model simulations of turbulent dispersion around buildings. Atmos Environ 32:665–672

    Article  Google Scholar 

  • Li Q, Bou-Zeid E, Anderson W, Grimmond S, Hultmark M (2016a) Quality and reliability of LES of convective scalar transfer at high Reynolds numbers. Int J Heat Mass Transf 102:959–970

    Article  Google Scholar 

  • Li Q, Bou-Zeid E, Anderson W (2016b) The impact and treatment of the Gibbs phenomenon in immersed boundary method simulations of momentum and scalar transport. J Comput Phys 310:237–251

    Article  Google Scholar 

  • Macdonald R (2000) Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97:25–45

    Article  Google Scholar 

  • Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteorol 104:261–304

    Article  Google Scholar 

  • Mascart P, Noilhan J, Giordani H (1995) A modified parameterization of flux-profile relationships in the surface layer using different roughness length values for heat and momentum. Boundary-Layer Meteorol 72:331–344

    Article  Google Scholar 

  • Masson V (2000) A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol 94:357–397

    Article  Google Scholar 

  • Matthes JH, Sturtevant C, Verfaillie J, Knox S, Baldocchi D (2014) Parsing the variability in \(\text{ CH }_{4}\) flux at a spatially heterogeneous wetland: integrating multiple eddy covariance towers with high-resolution flux footprint analysis. J Geophys Res Biogeosci 119:1322–1339

    Article  Google Scholar 

  • Mordant N, Lévêque E, Pinton J-F (2004) Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J Phys 6:116

    Article  Google Scholar 

  • Nunez M, Oke TR (1977) The energy balance of an urban canyon. J Appl Meteorol 16:11–19

    Article  Google Scholar 

  • Pasquill F (1972) Some aspects of boundary layer description. Q J R Meteorol Soc 98:469–494

    Article  Google Scholar 

  • Pavageau M, Schatzmann M (1999) Wind tunnel measurements of concentration fluctuations in an urban street canyon. Atmos Environ 33:3961–3971

    Article  Google Scholar 

  • Rodean HC (1996) Stochastic Lagrangian models of turbulent diffusion. Meteorological monographs. American Meteorological Society, Boston

    Book  Google Scholar 

  • Rotach M (1995) Profiles of turbulence statistics in and above an urban street canyon. Atmos Environ 29:1473–1486

    Article  Google Scholar 

  • Schmid H (1994) Source areas for scalars and scalar fluxes. Boundary-Layer Meteorol 67:293–318

    Article  Google Scholar 

  • Schmid H, Oke T (1990) A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain. Q J R Meteorol Soc 116:965–988

    Article  Google Scholar 

  • Schmid H (2002) Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agric For Meteorol 113:159–183

    Article  Google Scholar 

  • Schmid H (1988) Spatial scales of sensible heat flux variability: representativeness of flux measurements and surface layer structure over suburban terrain. Ph.D. thesis, The University of British Columbia

  • Schubert S, Grossman-Clarke S, Martilli A (2012) A double-canyon radiation scheme for multi-layer urban canopy models. Boundary-Layer Meteorol 145:439–468

    Article  Google Scholar 

  • Schuepp P, Leclerc M, MacPherson J, Desjardins R (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorol 50:355–373

    Article  Google Scholar 

  • Sogachev A, Lloyd J (2004) Using a one-and-a-half order closure model of the atmospheric boundary layer for surface flux footprint estimation. Boundary-Layer Meteorol 112:467–502

    Article  Google Scholar 

  • Song J, Wang Z, Wang C (2017) Biospheric and anthropogenic contributors to atmospheric \(\text{ CO }_{2}\) variability in a residential neighborhood of Phoenix, Arizona. J Geophys Res Atmos 122:3317–3329

    Article  Google Scholar 

  • Steinfeld G, Raasch S, Markkanen T (2008) Footprints in homogeneously and heterogeneously driven boundary layers derived from a Lagrangian stochastic particle model embedded into large-eddy simulation. Boundary-Layer Meteorol 129:225–248

    Article  Google Scholar 

  • Sundqvist E, Mölder M, Crill P, Kljun N, Lindroth A (2015) Methane exchange in a boreal forest estimated by gradient method. Tellus B 67:26688

    Article  Google Scholar 

  • Thomson D (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 180:529–556

    Article  Google Scholar 

  • Tominaga Y, Stathopoulos T (2011) CFD modeling of pollution dispersion in a street canyon: comparison between LES and RANS. J Wind Eng Ind Aerodyn 99:340–348

    Article  Google Scholar 

  • Tseng Y-H, Meneveau C, Parlange MB (2006) Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ Sci Technol 40:2653–2662

    Article  Google Scholar 

  • Vesala T, Järvi L, Launiainen S, Sogachev A, Rannik Ü, Mammarella I, Sivola E, Keronen P, Rinne J, Rikonen A, Nikinmaa E (2008) Surface-atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus B 60(2):188–199

    Article  Google Scholar 

  • Wang W, Liu W, Zhang T, Ren M (2013a) Evaluation of backward Lagrangian stochastic (bLS) model to estimate gas emissions from complex sources based on numerical simulations. Atmos Environ 67:211–218

    Article  Google Scholar 

  • Wang Z-H, Bou-Zeid E, Smith JA (2013b) A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Q J R Meteorol Soc 139:1643–1657

    Article  Google Scholar 

  • Wang Z-H, Bou-Zeid E, Smith JA (2011) A spatially-analytical scheme for surface temperatures and conductive heat fluxes in urban canopy models. Boundary-Layer Meteorol 138:171–193

    Article  Google Scholar 

  • Wang Z-H, Fan C, Myint SW, Wang C (2016) Size matters: what are the characteristic source areas for urban planning strategies? PloS One 11:e0165726

    Article  Google Scholar 

  • Wilson J, Flesch T, Crenna B (2012) Estimating surface-air gas fluxes by inverse dispersion using a backward lagrangian stochastic trajectory model. In: Lin J, Brunner D, Gerbig C, Stohl A, Luhar A, Webley P (eds) Lagrangian model atmosphere. American Geophysical Union, Washington DC, pp 149–162

    Google Scholar 

  • Wilson J, Zhuang Y (1989) Restriction on the timestep to be used in stochastic Lagrangian models of turbulent dispersion. Boundary-Layer Meteorol 49:309–316

    Article  Google Scholar 

  • Wu Y-T, Porté-Agel F (2011) Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Boundary-Layer Meteorol 138:345–366

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation (NSF) under grant number CBET-1435881. The authors thank three anonymous reviewers for their constructive feedback and help in improving the quality of the article. We gratefully acknowledge the technical help and insightful suggestions by Professor Antti Hellsten, Professor Xuhui Cai, Professor Andreas Stohl, Professor Andreas Christen, Professor Andrew Black, Dr. Luca Delle Monache and Dr. Jeffrey C. Weil via email communications in improving the model development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hua Wang.

Appendices

Appendix A: Derivation of \({\phi }/{g_a }\) in Eqs. 79

In the 3D Euclidean space, \({\phi }/{g_a }\), based on Thomson’s “simplest” solution (Thomson 1987; Rodean 1996), is given by

$$\begin{aligned} \frac{\phi _1 }{g_a }= & {} \frac{1}{2}\frac{\partial (\sigma _1 \sigma _l )}{\partial x_l }+\frac{\partial U_1 }{\partial t}+U_l \frac{\partial U_1 }{\partial x_l }+\frac{1}{2}(\sigma _l \sigma _j )^{-1}\frac{\partial (\sigma _1 \sigma _l )}{\partial x_k }(u_j -U_j )(u_k -U_k )\nonumber \\&+\left[ {\frac{1}{2}(\sigma _l \sigma _j )^{-1}\left( {\frac{\partial (\sigma _1 \sigma _l )}{\partial t}+U_m \frac{\partial (\sigma _1 \sigma _l )}{\partial x_m }} \right) +\frac{\partial U_1 }{\partial x_j }} \right] (u_j -U_j ), \end{aligned}$$
(21)
$$\begin{aligned} \frac{\phi _2 }{g_a }= & {} \frac{1}{2}\frac{\partial (\sigma _2 \sigma _l )}{\partial x_l }+\frac{\partial U_2 }{\partial t}+U_l \frac{\partial U_2 }{\partial x_l }+\frac{1}{2}(\sigma _l \sigma _j )^{-1}\frac{\partial (\sigma _2 \sigma _l )}{\partial x_k }(u_j -U_j )(u_k -U_k )\nonumber \\&+\left[ {\frac{1}{2}(\sigma _l \sigma _j )^{-1}\left( {\frac{\partial (\sigma _2 \sigma _l )}{\partial t}+U_m \frac{\partial (\sigma _2 \sigma _l )}{\partial x_m }} \right) +\frac{\partial U_2 }{\partial x_j }} \right] (u_j -U_j ),\end{aligned}$$
(22)
$$\begin{aligned} \frac{\phi _3 }{g_a }= & {} \frac{1}{2}\frac{\partial (\sigma _3 \sigma _l )}{\partial x_l }+\frac{\partial U_3 }{\partial t}+U_l \frac{\partial U_3 }{\partial x_l }+\frac{1}{2}(\sigma _l \sigma _j )^{-1}\frac{\partial (\sigma _3 \sigma _l )}{\partial x_k }(u_j -U_j )(u_k -U_k )\nonumber \\&+\left[ {\frac{1}{2}(\sigma _l \sigma _j )^{-1}\left( {\frac{\partial (\sigma _3 \sigma _l )}{\partial t}+U_m \frac{\partial (\sigma _3 \sigma _l )}{\partial x_m }} \right) +\frac{\partial U_3 }{\partial x_j }} \right] (u_j -U_j ). \end{aligned}$$
(23)

With the assumptions of horizontal homogeneity, and no subsidence, we have

$$\begin{aligned} \frac{\partial }{\partial x}= & {} \frac{\partial }{\partial y}=\frac{\partial }{\partial t}=0, \end{aligned}$$
(24)
$$\begin{aligned} V(z)= & {} 0\rightarrow U_2 \frac{\partial }{\partial x_2 }=0\nonumber \\ W(z)= & {} 0\rightarrow U_3 \frac{\partial }{\partial x_3 }=0. \end{aligned}$$
(25)

Note that in Eqs. 21, 22 and 23, the ensemble average is given as

$$\begin{aligned} \sigma _i \sigma _j =\overline{(u_i -U_i )(u_j -U_j )} . \end{aligned}$$
(26)

Further assuming there is no covariance between any two different velocities, Eqs. 21, 22 and 23 can be simplified as

$$\begin{aligned} \frac{\phi _1 }{g_a }= & {} \frac{\partial U}{\partial z}w+\frac{1}{2}\frac{1}{\sigma _1 \sigma _1 }\frac{\partial \sigma _1 \sigma _1 }{\partial z}(u-U)w=\frac{\partial U}{\partial z}w+\frac{1}{2\sigma _u ^{2}}\frac{\partial \sigma _u ^{2}}{\partial z}(u-U)w, \end{aligned}$$
(27)
$$\begin{aligned} \frac{\phi _2 }{g_a }= & {} \frac{1}{2\sigma _2 \sigma _2 }\frac{\partial \sigma _2 \sigma _2 }{\partial z}vw=\frac{1}{2\sigma _v ^{2}}\frac{\partial \sigma _v ^{2}}{\partial z}vw, \end{aligned}$$
(28)
$$\begin{aligned} \frac{\phi _3 }{g_a }= & {} \frac{1}{2}\frac{\partial \sigma _3 \sigma _3 }{\partial z}+\frac{1}{2\sigma _3 \sigma _3 }\frac{\partial \sigma _3 \sigma _3 }{\partial z}w^{2}=\frac{1}{2}\frac{\partial \sigma _w ^{2}}{\partial z}+\frac{1}{2\sigma _w ^{2}}\frac{\partial \sigma _w ^{2}}{\partial z}w^{2}, \end{aligned}$$
(29)

in the proposed model.

Appendix B: Equations for Stability, Turbulent Flow and Statistics

The stability correction function \(\psi _{m}\) (Horst and Weil 1994) in Eq. 10 is given by

$$\begin{aligned} \psi _m =\left\{ {\begin{array}{ll} 2\ln \left[ {(1+\xi )/2} \right] +\ln \left[ {(1+\xi ^{2})/2} \right] -2\tan ^{-1}\xi +\pi /2&{}\hbox { for }L<0 \\ -5-5\ln \left[ {(z-d)/L} \right] &{}\hbox { for }L\ge 0\hbox { and (}z-d)/L>1 \\ -5(z-d)/L&{}\hbox { for }L\ge 0\hbox { and }(z-d)/L\le 1 \\ \end{array}} \right. , \end{aligned}$$
(30)

where L is the Obukhov length, and

$$\begin{aligned} \xi =\left[ {1-16(z-d)/L} \right] ^{1/4}. \end{aligned}$$
(31)

The velocity gradient in Eq. 7 can be expressed as (Businger et al. 1971; Kormann and Meixner 2001)

$$\begin{aligned} \frac{\partial U}{\partial z}=\left\{ {\begin{array}{ll} \frac{u_{*} }{\kappa (z-d)}\left[ {1-16(z-d)/L} \right] ^{-1/4}&{}\hbox { for }L<0 \\ \frac{6u_{*} }{\kappa (z-d)}&{}\hbox { for }L\ge 0\hbox { and (}z-d)/L>1 \\ \frac{u_{*} }{\kappa (z-d)}\left[ {1+5(z-d)/L} \right] &{}\hbox { for }L\ge 0 \hbox { and }(z-d)/L\le 1 \\ \end{array}} \right. , \end{aligned}$$
(32)

and in the urban canyon, Eq. 32 can be rewritten as

$$\begin{aligned} \frac{\partial U}{\partial z}=\frac{U_h \alpha }{h}\exp \left[ {\alpha \left( {z/h-1} \right) } \right] . \end{aligned}$$
(33)

The general equation for the Lagrangian decorrelation time scale under various stability conditions is (Flesch et al. 1995)

$$\begin{aligned} t_L =\left\{ {\begin{array}{ll} \frac{0.5(z-d)}{\sigma _w }\left[ {\frac{1}{1+5(z-d)/L}} \right] &{}\hbox { for }L<0 \\ \frac{0.5(z-d)}{\sigma _w }\left[ {1-6(z-d)/L} \right] ^{1/4}&{}\hbox { for }L\ge 0 \\ \end{array}} \right. , \end{aligned}$$
(34)

where \(\sigma _{w}\) is the standard deviation of the vertical velocity component (Hsieh and Katul 2009)

$$\begin{aligned} \sigma _w =\left\{ {\begin{array}{ll} 1.25u_{*} \left( {1-3\frac{z-d}{L}} \right) ^{{1/3}}&{}\hbox { for }z/L<0 \\ 1.25u_{*} &{}\hbox { for }z/L\ge 0 \\ \end{array}} \right. . \end{aligned}$$
(35)

The standard deviation of the streamwise velocity component is given by (Hsieh and Katul 2009)

$$\begin{aligned} \sigma _u =\left\{ {\begin{array}{ll} 2.5u_{*} \left( {1-3\frac{z-d}{L}} \right) ^{\hbox {1/3}}&{}\hbox { for }z/L<0 \\ 2.5u_{*} &{}\hbox { for }z/L\ge 0 \\ \end{array}} \right. . \end{aligned}$$
(36)

After taking the boundary-layer height (Cai et al. 2008; Hsieh and Katul 2009) into consideration (as an upper boundary), instead of Eq. 36 we use,

$$\begin{aligned} \sigma _u= & {} \left\{ {\begin{array}{ll} (0.35w_{*} ^{2}+2.0u_{*} ^{2})^{1/2} &{}\hbox { for }z/L<0 \\ 2.5u_{*} &{}\hbox { for }z/L\ge 0 \\ \end{array}} \right. , \end{aligned}$$
(37)
$$\begin{aligned} w_{*}= & {} \left( {-\frac{u_{*} ^{3}h_b }{L\kappa }} \right) ^{1/3}, \end{aligned}$$
(38)

where \(w_*\) is the convective velocity, and \(h_{b}\) is the boundary-layer height that varies with stability (Cai et al. 2008).

The standard deviation of the lateral velocity component is given by (Flesch et al. 1995; Cai et al. 2008)

$$\begin{aligned} \sigma _v =\left\{ {\begin{array}{ll} \sigma _u &{} \hbox { for }z/L<0 \\ \sigma _w &{}\hbox { for }z/L\ge 0 \\ \end{array}} \right. . \end{aligned}$$
(39)

Appendix C: Flow Chart of Particle Trajectory Tracking Process and Touchdown Criteria

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wang, ZH., Yang, J. et al. A Backward-Lagrangian-Stochastic Footprint Model for the Urban Environment. Boundary-Layer Meteorol 168, 59–80 (2018). https://doi.org/10.1007/s10546-018-0338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-018-0338-6

Keywords

Navigation