Skip to main content
Log in

Efficient Prediction of Low-Visibility Events at Airports Using Machine-Learning Regression

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We address the prediction of low-visibility events at airports using machine-learning regression. The proposed model successfully forecasts low-visibility events in terms of the runway visual range at the airport, with the use of support-vector regression, neural networks (multi-layer perceptrons and extreme-learning machines) and Gaussian-process algorithms. We assess the performance of these algorithms based on real data collected at the Valladolid airport, Spain. We also propose a study of the atmospheric variables measured at a nearby tower related to low-visibility atmospheric conditions, since they are considered as the inputs of the different regressors. A pre-processing procedure of these input variables with wavelet transforms is also described. The results show that the proposed machine-learning algorithms are able to predict low-visibility events well. The Gaussian process is the best algorithm among those analyzed, obtaining over 98% of the correct classification rate in low-visibility events when the runway visual range is \({>}\)1000 m, and about 80% under this threshold. The performance of all the machine-learning algorithms tested is clearly affected in extreme low-visibility conditions (\({<}\)500 m). However, we show improved results of all the methods when data from a neighbouring meteorological tower are included, and also with a pre-processing scheme using a wavelet transform. Also presented are results of the algorithm performance in daytime and nighttime conditions, and for different prediction time horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AEMET (2015) Aeronautical climatology of valladolid/villanubla. Technical report, Agencia Estatal de Meteorologia

  • Ahmed MM, Abdel-Aty M, Lee J, Yu R (2014) Real-time assessment of fog-related crashes using airport weather data: a feasibility analysis. Accid Anal Prev 72:309–317

    Article  Google Scholar 

  • Bartok J, Bott A, Gera M (2012) Fog prediction for road traffic safety in a coastal desert region. Boundary-Layer Meteorol 145:485–506

    Article  Google Scholar 

  • Bergot T, Guedalia D (1994) Numerical forecasting of radiation fog. part i: numerical model and sensitivity tests. Mon Weather Rev 122:1218–1230

    Article  Google Scholar 

  • Bergot T, Terradellas-Jubanteny E, Cuxart-Rodamilans J, Mira A, Liechti O, Mueller M, Nielsen NW (2007) Intercomparison of single-column numerical models for the prediction of radiation fog. J Appl Meteorol Clim 46(4):504–521

    Article  Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford, 482 pp

  • Boneh T, Weymouth G, Newham P, Potts R, Bally J, Nicholson A, Korb K (2015) Fog forecasting for Melbourne airport using a Bayesian decision network. Weather Forecast 30(5):1218–1233

    Article  Google Scholar 

  • Bott A, Trautmann T (2002) Pafog: a new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos Res 64:191–203

    Article  Google Scholar 

  • Camps-Valls G (2015) Simple regression toolbox (simpleR). http://www.uv.es/gcamps/software.html

  • Chang C, Lin C (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(27):1–27

    Article  Google Scholar 

  • Colabone RO, Ferrari A, da Silva-Vecchia F, Bruno-Tech A (2015) Application of artificial neural networks for fog forecast. J Aerospace Technol Manag 7(2):240–246

    Article  Google Scholar 

  • Deo R, Wen X, Qi F (2016) A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Appl Energy 168:568–593

    Article  Google Scholar 

  • Dutta D, Chaudhuri S (2015) Nowcasting visibility during wintertime fog over the airport of a metropolis of India: decision tree algorithm and artificial neural network approach. Nat Hazards 75:1349–1368

    Article  Google Scholar 

  • Duynkerke P (1998) Turbulence, radiation and fog in Dutch stable boundary layers. Boundary-Layer Meteorol 90:447–477

    Article  Google Scholar 

  • Fabbian D, De-Dear R, Lellyett S (2007) Application of artificial neural network forecasts to predict fog at Canberra international airport. Weather Forecast 22:372–381

    Article  Google Scholar 

  • Fedorova N, Levit V, Silva A, Santos D (2013) Low visibility formation and forecasting on the northern coast of Brazil. Pure Appl Geophys 170(4):689–709

    Article  Google Scholar 

  • Hagan MT, Menhaj MB (1994) Training feed forward network with the Marquardt algorithm. IEEE Trans Neural Nets 5(6):989–993

    Article  Google Scholar 

  • Haykin S (1998) Neural networks: a comprehensive foundation. Pearson, Cambridge, 842 pp

  • Herman G, Schumacher R (2016) Using reforecasts to improve forecasting of fog and visibility for aviation. Weather Forecast 31:467–482

    Article  Google Scholar 

  • Huang G, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern, Part B 42(2):513–529

    Article  Google Scholar 

  • Huang GB (2013) Extreme learning machine matlab code. http://www.ntu.edu.sg/home/egbhuang/elm_codes.html

  • Huang GB, Zhu QY (2006) Extreme learning machine: theory and applications. Neurocomput 70:489–501

    Article  Google Scholar 

  • Kanamitsu M, Alpert J, Campana K, Caplan P, Deaven D, Iredell M, Katz B, Pan H, Sela J, White G (1991) Recent changes implemented into the global forecast system at NMC. Weather Forecast 6(3):425–436

    Article  Google Scholar 

  • Koziara M, Robert J, Thompson W (1983) Estimating marine fog probability using a model output statistics scheme. Mon Weather Rev 111:2333–2340

    Article  Google Scholar 

  • Lázaro-Gredilla M, van Vaerenbergh S, Lawrence N (2012) Overlapping mixtures of gaussian processes for the data association problem. Pattern Recogn 45(4):1386–1395

    Article  Google Scholar 

  • LIBSVM (2015) LIBSVM—A library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  • Lorenz EN (1965) A study of the predictability of a 28-variable atmospheric model. Tellus 17:321–333

    Article  Google Scholar 

  • Mallat S (1998) A wavelet tour of signal processing. Academic Press, Cambridge, 620 pp

  • MATLAB (2014) Multilevel 1-D wavelet decomposition. In: Wavelet toolbox

  • Miao Y, Potts R, Huang X, Elliott G, Rivett R (2012) A fuzzy logic fog forecasting model for Perth Airport. Pure Appl Geophys 169:110–1119

    Article  Google Scholar 

  • Morales-Rodríguez C, Ortega-Villazán M (1994) Approximation to the study of fogs in middle Duero valley. Geogr Res 12:23–44

    Google Scholar 

  • Nourani V, Baghanam A, Adamowski J, Kisi O (2014) Applications of hybrid wavelet - artificial intelligence models in hydrology: a review. J Hydrol 514:358–377

    Article  Google Scholar 

  • Ortiz-García E, Salcedo-Sanz S, Pérez-Bellido A, Portilla-Figueras JA (2009) Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions. Neurocomput 72:3683–3691

    Article  Google Scholar 

  • Rasmussen CE, Williams KH (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    Google Scholar 

  • Rebollo JJ, Balakrishnan H (2014) Characterization and prediction of air traffic delays. Trans Res C Emerging Technol 44:231–241

    Article  Google Scholar 

  • Roman-Gascón C, Yagüe C, Sastre M, Maqueda G, Salamanca F, Viana S (2012) Observations and WRF simulations of fog events at the Spanish northern plateau. Adv Sci Res 8:11–18

    Article  Google Scholar 

  • Román-Gascón C, Steeneveld G, Yagüe C, Sastre M, Arrillaga J, Maqueda G (2016) Forecasting radiation fog at climatologically contrasting sites: evaluation of statistical methods and WRF. Q J R Meteorol Soc 142:1048–1063

    Article  Google Scholar 

  • Salcedo-Sanz S, Rojo JL, Martínez-Ramón M, Camps-Valls G (2014) Support vector machines in engineering: an overview. WIREs Data-Mining Knowl Discov 4(3):234–267

    Article  Google Scholar 

  • Sanderson J (2015) EASA ATPL meteorology manual, Jeppesen Press

  • Simmons AJ, Burridge DM, Jarraud M, Girard C, Wergen W (1989) The ECMWF medium-range prediction models: development of the numerical formulations and the impact of increased resolution. Meteorol Atmos Phys 40:28–60

    Article  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang X, Wang W, Powers W (2008) A description of the advanced research WRF, Version 3. NCAR Technical Note

  • Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222

    Article  Google Scholar 

  • Steeneveld G, Ronda R, Holtslag A (2015) The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Boundary-Layer Meteorol 154:265–289

    Article  Google Scholar 

  • Terradellas E, Cano D (2006) Assessment of the fog and low clouds forecasts produced by the h1d single column model. In: Abstract, sixth annual meeting of the European Meteorological Society, 4–8 September 2006, Ljubljana, Slovenia

  • Undén P (2002) HIRLAM-5 scientific documentation. HIRLAM Consortium

  • Van der Velde I, Steeneveld G, Wichers-Schreur B, Holtslag A (2010) Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon Weather Rev 138:4237–4253

    Article  Google Scholar 

  • WMO (2011) Manual on codes, international codes. Technical report, World Meteorological Organization

  • Zhou B, Du J (2010) Fog prediction from a multimodel mesoscale ensemble prediction system. Weather Forecast 25:303–322

    Article  Google Scholar 

  • Zhou B, Du J, Gultepe I, Dimego G (2011) Forecast of low visibility and fog from NCEP: current status and efforts. Pure Appl Geophys 169:895–909

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Comunidad de Madrid, under the Project No. S2013/ICE-2933, and by Project TIN2014-54583-C2-2-R of the Spanish Ministerial Commission of Science and Technology (MICYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Salcedo-Sanz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornejo-Bueno, L., Casanova-Mateo, C., Sanz-Justo, J. et al. Efficient Prediction of Low-Visibility Events at Airports Using Machine-Learning Regression. Boundary-Layer Meteorol 165, 349–370 (2017). https://doi.org/10.1007/s10546-017-0276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-017-0276-8

Keywords

Navigation