Skip to main content
Log in

Analytical Reduced Models for the Non-stationary Diabatic Atmospheric Boundary Layer

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Geophysical boundary-layer flows feature complex dynamics that often evolve with time; however, most current knowledge centres on the steady-state problem. In these atmospheric and oceanic boundary layers, the pressure gradient, buoyancy, Coriolis, and frictional forces interact to determine the statistical moments of the flow. The resulting equations for the non-stationary mean variables, even when succinctly closed, remain challenging to handle mathematically. Here, we derive a simpler physical model that reduces these governing unsteady Reynolds-averaged Navier–Stokes partial differential equations into a single first-order ordinary differential equation with non-constant coefficients. The reduced model is straightforward to solve under arbitrary forcing, even when the statistical moments are non-stationary and the viscosity varies in time and space. The model is successfully validated against large-eddy simulation for, (1) time-variable pressure gradients, and (2) linearly time-variable buoyancy. The new model is shown to have a superior performance compared to the classic Blackadar solutions (and later improvements on these solutions), and it covers a much wider range of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albertson JD, Parlange MB (1999) Natural integration of scalar fluxes from complex terrain. Adv Water Resour 23:239–252. doi:10.1016/S0309-1708(99)00011-1

    Article  Google Scholar 

  • Baas P, Van de Wiel BJH, Van den Brink L, Holtslag AAM (2012) Composite hodographs and inertial oscillations in the nocturnal boundary layer. Q J R Meteorol Soc 138:528–535. doi:10.1002/qj.941

    Article  Google Scholar 

  • Banta RM, Newsom RK, Lundquist JK, Pichugina YL (2002) Nocturnal low-level jet characteristics over Kansas during CASES-99. Boundary-Layer Meteorol 105:221–252

    Article  Google Scholar 

  • Blackadar A (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Am Meteorol Soc 38:283–290

    Google Scholar 

  • Bonner W, Paegle J (1970) Diurnal variations in boundary layer winds over the South-Central United States in summer. Mon Weather Rev 98:735–744

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange M (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17:25105. doi:10.1063/1.1839152

    Article  Google Scholar 

  • Buajitti K, Blackadar AK (1957) Theoretical studies of diurnal wind-structure variations in the planetary boundary layer. Q J R Meteorol Soc 83:486–500. doi:10.1002/qj.49708335804

    Article  Google Scholar 

  • Du Y, Rotunno R (2014) A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J Atmos Sci 71:3674–3683. doi:10.1175/JAS-D-14-0060.1

    Article  Google Scholar 

  • Ekman VW (1905) On the influence of the Earth’s rotation on ocean-currents. Ark Mat Astron Fys 2:1–52

    Google Scholar 

  • Garratt J (1994) Review: the atmospheric boundary layer. Earth Sci Rev 37:89–134. doi:10.1016/0012-8252(94)90026-4

    Article  Google Scholar 

  • Gayen B, Sarkar S, Taylor JR (2010) Large eddy simulation of a stratified boundary layer under an oscillatory current. J Fluid Mech 643:233. doi:10.1017/S002211200999200X

    Article  Google Scholar 

  • Grisogono B (1995) A generalized Ekman layer profile with gradually varying eddy diffusivities. Q J R Meteorol Soc 121:445–453

    Article  Google Scholar 

  • Hering W, Borden T (1962) Diurnal variations in the summer wind field over the Central United States. J Atmos Sci 19:81–86

    Article  Google Scholar 

  • Hsu BC, Lu X, Kwan M (2000) LES and RANS studies of oscillating flows over flat plate. J Eng Mech 126:186–193

    Article  Google Scholar 

  • Huang J, Bou-Zeid E (2013) Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: a large-eddy simulation study. J Atmos Sci 70:1513–1527. doi:10.1175/JAS-D-12-0167.1

    Article  Google Scholar 

  • Israeli M, Orszag SA (1981) Approximation of radiation boundary conditions. J Comput Phys 41:115–135. doi:10.1016/0021-9991(81)90082-6

    Article  Google Scholar 

  • Kumar V, Svensson G, HoltslagAAM Meneveau C, Parlange MB (2010) Impact of surface flux formulations and geostrophic forcing on large-eddy simulations of diurnal atmospheric boundary layer flow. J Appl Meteorol Climatol 49:1496–1516. doi:10.1175/2010JAMC2145.1

    Article  Google Scholar 

  • Lewis DM, Belcher SE (2004) Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn Atmos Ocean 37:313–351. doi:10.1016/j.dynatmoce.2003.11.001

    Article  Google Scholar 

  • Lohmann IP, Fredsøe J, Sumer BM, Christensen ED (2006) Large eddy simulation of the ventilated wave boundary layer. J Geophys Res 111:C06036. doi:10.1029/2005JC002946

    Google Scholar 

  • Madsen OS (1977) A realistic model the wind-iduced Ekman boundary layer. J Phys Oceanogr 7:248–255

    Article  Google Scholar 

  • Mahrt L (2013) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46:23–45. doi:10.1146/annurev-fluid-010313-141354

    Article  Google Scholar 

  • Mahrt LJ, Schwerdtfeger W (1970) Ekman spirals for exponential thermal wind. Boundary-Layer Meteorol 1:137–145. doi:10.1007/BF00185735

    Article  Google Scholar 

  • McNider RT (1982) A note on velocity fluctuations in drainage flows. J. Atmos. Sci. 39:1658–1660

    Article  Google Scholar 

  • Miles J (1994) Analytical solutions for the Ekman layer. Boundary-Layer Meteorol 67:1–10. doi:10.1007/BF00705505

    Article  Google Scholar 

  • Momen M (2016) Mean and turbulence dynamics of atmospheric boundary layers: large-eddy simulations and reduced analytical models. Ph.D. thesis, Princeton University

  • Momen M, Bou-zeid E (2017) Mean and turbulence dynamics in unsteady Ekman boundary layers. J Fluid Mech 816:209–242. doi:10.1017/jfm.2017.76

  • Momen M, Bou-Zeid E (2016) Large eddy simulations and damped-oscillator models of the unsteady Ekman boundary layer. J Atmos Sci 73:25–40. doi:10.1175/JAS-D-15-0038.1

    Article  Google Scholar 

  • Nunalee CG, Basu S (2013) Mesoscale modeling of coastal low-level jets: impliactions for offshore wind resource estimation. Wind Energy 17:657–669

    Google Scholar 

  • Orszag SA, Pao YH (1974) Numerical computation of turbulent shear flows. Adv Geophys 18:225–236

    Article  Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83:555–581. doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2

    Article  Google Scholar 

  • Radhakrishnan S, Piomelli U (2008) Large-eddy simulation of oscillating boundary layers: Model comparison and validation. J Geophys Res Ocean 113:1–14. doi:10.1029/2007JC004518

    Article  Google Scholar 

  • Schröter JS, Moene AF, Holtslag AAM (2013) Convective boundary layer wind dynamics and inertial oscillations: the influence of surface stress. Q J R Meteorol Soc 139:1694–1711. doi:10.1002/qj.2069

    Article  Google Scholar 

  • Shapiro A, Fedorovich E (2010) Analytical description of a nocturnal low-level jet. Q J R Meteorol Soc 136:1255–1262. doi:10.1002/qj.628

    Google Scholar 

  • Shibuya R, Sato K, Nakanishi M (2014) Diurnal wind cycles forcing inertial oscillations: a latitude-dependent resonance phenomenon. J Atmos Sci 71:767–781. doi:10.1175/JAS-D-13-0124.1

    Article  Google Scholar 

  • Tan ZM (2001) An approximate analytical solution for the baroclinic and variable eddy diffusivity semi-geostrophic Ekman boundary layer. Boundary-Layer Meteorol 98:361–385. doi:10.1023/A:1018708726112

    Article  Google Scholar 

  • Tennekes H, Lumley J (1972) A first course in turbulence. MIT, Boston, 300 pp

  • Thorpe AJ, Guymer TH (1977) The nocturnal jet. Q J R Meteorol Soc 103:633–653. doi:10.1002/qj.49710343809

    Article  Google Scholar 

  • Van de Wiel BJH, Moene AF, Steeneveld GJ, Baas P, Bosveld FC, Holtslag AAM (2010) A Conceptual view on inertial oscillations and nocturnal low-level jets. J Atmos Sci 67:2679–2689. doi:10.1175/2010JAS3289.1

  • Vincent CL (2010) Mesoscale wind fluctuations over Danish waters. Ph.D. thesis, Denmark Technical University

  • Yordanov D, Syrakov D, Djolov G (1983) A barotropic planetary boundary layer. Boundary-Layer Meteorol 25:363–373. doi:10.1007/BF02041155

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Physical and Dynamic Meteorology Program of the National Science Foundation under AGS-1026636, and from the Cooperative Institute for Climate Science of Princeton University and the National Oceanographic and Atmospheric Administration under Grant Number 344-6127. The simulations were performed on the computing clusters of the National Centre for Atmospheric Research under Project Number P36861020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elie Bou-Zeid.

Appendix: Particular Solutions in Polar Coordinates

Appendix: Particular Solutions in Polar Coordinates

The particular solution of the reduced system in polar coordinates using Eq. 13 or 15 are

$$\begin{aligned}&\displaystyle M_{p}^{2}=\left( {u_{p}^{2}+v_{p}^{2}} \right) +2\hbox {e}^{-\alpha t}\left( {u_{p} \cos ft+v_{p} \sin ft} \right) , \end{aligned}$$
(19a)
$$\begin{aligned}&\displaystyle \tan \varphi _{p} =\frac{u_{p} \tan ft+v_{p} }{\hbox {e}^{-\alpha t}\cos ft+u_{p} }. \end{aligned}$$
(19b)

The transient parts in these equations appear due to the nonlinear relation between the forcing (pressure) and the velocity as in Eq. 8. For instance, the statistically-steady-state oscillations of Eqs.  13 and 15 are respectively

$$\begin{aligned} \lim _{t\rightarrow \infty } M(t)= & {} Qf\sqrt{\frac{\left( {\omega \sin (\omega t)+\alpha \cos (\omega t)} \right) ^{2}+f^{2}\cos ^{2}(\omega t)}{(\alpha ^{2}+f^{2}+\omega ^{2})^{2}-4f^{2}\omega ^{2}}}, \end{aligned}$$
(20a)
$$\begin{aligned} \lim _{t\rightarrow \infty } \varphi (t)= & {} \tan ^{-1}\left( {\frac{\sqrt{\alpha ^{2}+w^{2}} }{f}\frac{\cos (\omega t+\gamma _{2} )}{\cos (\omega t+\gamma _{1} )}} \right) , \end{aligned}$$
(20b)
$$\begin{aligned} \lim _{t\rightarrow \infty } M(t)= & {} \frac{Qf}{\sqrt{\alpha ^{2}+(f-\omega )^{2}} }, \end{aligned}$$
(21a)
$$\begin{aligned} \lim _{t\rightarrow \infty } \varphi (t)= & {} \tan ^{-1}\left( {\frac{\cos (\omega t+\gamma _{4} )}{\cos (\omega t+\gamma _{3} )}} \right) . \end{aligned}$$
(21b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momen, M., Bou-Zeid, E. Analytical Reduced Models for the Non-stationary Diabatic Atmospheric Boundary Layer. Boundary-Layer Meteorol 164, 383–399 (2017). https://doi.org/10.1007/s10546-017-0247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-017-0247-0

Keywords

Navigation