Skip to main content
Log in

The Role of Large-Coherent-Eddy Transport in the Atmospheric Surface Layer Based on CASES-99 Observations

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The analysis of momentum and heat fluxes from the Cooperative Atmosphere-Surface Exchange Study 1999 (CASES-99) field experiment is extended throughout the diurnal cycle following the investigation of nighttime turbulence by Sun et al. (J Atmos Sci 69:338–351, 2012). Based on the observations, limitations of Monin–Obukhov similarity theory (MOST) are examined in detail. The analysis suggests that strong turbulent mixing is dominated by relatively large coherent eddies that are not related to local vertical gradients as assumed in MOST. The HOckey-Stick Transition (HOST) hypothesis is developed to explain the generation of observed large coherent eddies over a finite depth and the contribution of these eddies to vertical variations of turbulence intensity and atmospheric stratification throughout the diurnal cycle. The HOST hypothesis emphasizes the connection between dominant turbulent eddies and turbulence generation scales, and the coupling between the turbulence kinetic energy and the turbulence potential energy within the turbulence generation layer in determining turbulence intensity. For turbulence generation directly influenced by the surface, the HOST hypothesis recognizes the role of the surface both in the vertical variation of momentum and heat fluxes and its boundary effect on the size of the dominant turbulence eddies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Acevedo OC, Fitzjarrald DR (2003) In the core of the night-effects of intermittent mixing on a horizontally heterogeneous surfaces. Boundary-Layer Meteorol 106:1–33

    Article  Google Scholar 

  • Andreas EL, Hicks BB (2002) Comments on critical test of the validity of Monin-Obukhov similarity during convective conditions. J Atmos Sci 59:2605–2607

    Article  Google Scholar 

  • Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux-gradient relationships for stably stratified conditions. Q J R Meteorol Soc 63:3045–3054

    Google Scholar 

  • Banta RM, Pichugina YL, Newsom RK (2003) Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J Atmos Sci 60:2549–2555

    Article  Google Scholar 

  • Banta RM (2008) Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys 56:58–87. doi:10.2478/s11600-007-0049-8

    Article  Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30:327–341

    Article  Google Scholar 

  • Bonin TA, Blumberg WG, Klein PM, Chilson PB (2015) Thermodynamic and turbulence characteristics of the Southern Great Plains nocturnal boundary layer under differing turbulent regimes. Boundary-Layer Meteorol 157:1–2

    Article  Google Scholar 

  • Boussinesq J (1877) Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’Académie des Sciences 23(1):1–680

    Google Scholar 

  • Caulfield CP, Kerswell RR (2001) Maximal mixing rate in turbulent stably stratified Coutte flow. Phys Fluids 13:894–900

    Article  Google Scholar 

  • Etling D, Brown R (1993) Roll vortices in the planetary boundary layer: a review. Boundary-Layer Meteorol 65:215–248

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316 pp

  • Hamba F (2005) Nonlocal analysis of the Reynolds stress in turbulent shear flow. Phys Fluids 17(11):102–115

    Article  Google Scholar 

  • Hicks BB (1978) Some limitations of dimensional analysis and power laws. Boundary-Layer Meteorol 14:567–569

    Article  Google Scholar 

  • Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78(3–4):215–246

    Article  Google Scholar 

  • Högström U, Hunt JCR, Smedman AS (2002) Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol 103:101–124

    Article  Google Scholar 

  • Holliday D, McIntyre ME (1981) On potential energy density in an incompressible, stratified fluid. J Fluid Mech 107:221–225

    Article  Google Scholar 

  • Hopfinger EJ (1987) Turbulence in stratified fluids: a review. J Geophys Res 92(C5):5287–5303

    Article  Google Scholar 

  • Howell J (1995) Identifying sudden changes in data. Mon Weather Rev 123(4):1207–1212

    Article  Google Scholar 

  • Howell J, Mahrt L (1994) An adaptive multiresolution data filter: applications to turbulence and climatic time series. J Atmos Sci 51(4):2165–2178

    Article  Google Scholar 

  • Howell JF, Sun J (1999) Surface-layer fluxes in stable conditions. Boundary-Layer Meteorol 90:495–520

    Article  Google Scholar 

  • King JC, Mobbs SD, Edwards NR (1994) Surface boundary conditions in stably-stratified environmental flows. In: Castro IP, Rochliff NJ (eds) Stably stratified flows: flow and dispersion over topography. Institute of Mathematics and Its Applications, University of Surrey; Oxford University Press, Oxford, pp 93–103

    Google Scholar 

  • Klipp CL, Mahrt L (2004) Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J R Meteorol Soc 130:2087–2103

    Article  Google Scholar 

  • Lenschow DH, Zhang SF, Stankov BB (1988) The stably stratified boundary layer over the Great Plains I: mean and turbulence structure. Boundary-Layer Meteorol 42:95–121

    Article  Google Scholar 

  • Lindborg E (2006) The energy cascade in a strongly stratified fluid. J Fluid Mech 550:207–242

    Article  Google Scholar 

  • Lin JT, Pao YH (1979) Wakes in stratified fluids. Ann Rev Fluid Mech 11:317–338

    Article  Google Scholar 

  • Mahrt L, Sun J, Blumen W, Delany T, Oncley S (1998) Nocturnal boundary-layer regimes. Boundary-Layer Meteorol 88:255–278

    Article  Google Scholar 

  • Mahrt L (2007) The influence of nonstationarity on the turbulent flux-gradient relationship for stable stratification. Boundary-Layer Meteorol 125:245–264

    Article  Google Scholar 

  • Mahrt L (2008) Bulk formulation of surface fluxes extended to weak-wind stable conditions. Q J R Meteorol Soc 134:1–10

    Article  Google Scholar 

  • Mahrt L (2009) Characteristics of submeso winds in the stable boundary layer. Boundary-Layer Meteorol 130:1–14

    Article  Google Scholar 

  • Mahrt L, Thomas C, Richardson S, Seaman N, Stauffer D, Zeeman M (2013) Non-stationary generation of weak turbulence for very stable and weak-wind conditions. Boundary-Layer Meteorol 147(2):179–199

    Article  Google Scholar 

  • Mahrt L, Sun J, Stauffer D (2015) Dependence of turbulent velocities on wind speed and stratification. Boundary-Layer Meteorol 155(1):55–71

    Article  Google Scholar 

  • Martins HS, Sá LD, Moraes OL (2013) Low level jets in the Pantanal wetland nocturnal boundary layer-case studies. Amer J Environ Eng 3(1):32–47

    Article  Google Scholar 

  • McNaughton K (2009) The rise and fall of Monin–Obukhov theory. AsiaFlux Newsletter 30:1–22

    Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the atmosphere near the ground. Trudy Geofiz Inst AN SSSR 24:163–187

    Google Scholar 

  • Obukhov AM (1946) Turbulence in an atmosphere with a non-uniform temperature. Trudy Instituta Teoreticheskio Geofiziki AN SSSR 1:95–115

    Google Scholar 

  • Ostrovsky L, Troitskaya YI (1987) A model of turbulent transfer and dynamics of turbulence in a stratified shear-flow. Izvestiya Akademii Nauk SSSR Fizika Atmosfery I Okeana 23(10):1031–1040

    Google Scholar 

  • Peña A, Gryning SE, Mann J (2010) On the length-scale of the wind profile. Q J R Meteorol Soc 136:2119–2131

    Article  Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99—a comprehensive investigation of the stable nocturnal boundary layer. Bull Amer Meteor Soc 83:555–581

    Article  Google Scholar 

  • Prandtl L (1925) Report on investigation of developed turbulence. Tech. rep, National Advisory Committee for Aeronautics, Technical Memorandum No 1231

  • Sanderse S, van der Pijl SP, Koren B (2011) Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy 14:799–819

    Article  Google Scholar 

  • Schmitt F (2007) About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mecanique 335(9/10):617–627

    Article  Google Scholar 

  • Starr VP (1968) Physics of negative viscosity phenomena. McGraw-Hill Book Company, New York

    Google Scholar 

  • Stull RB (1984) Transilient turbulence theory. Part I: the concept of eddy-mixing across finite distances. J Atmos Sci 41(23):3351–3367

  • Sun J, Esbensen SK, Mahrt L (1995) Estimation of surface heat flux. J Atmos Sci 52(17):3162–3171

    Article  Google Scholar 

  • Sun J, Burns SP, Lenschow DH, Banta R, Newsom R, Coulter R, Frasier S, Ince T, Nappo C, Cuxart J, Blumen W, Lee X, Hu XZ (2002) Intermittent turbulence associated with a density current passage in the stable boundary layer. Boundary-Layer Meteorol 105:199–219

    Article  Google Scholar 

  • Sun J, Burns SP, Delany AC, Oncley SP, Horst TW, Lenschow DH (2003) Heat balance in nocturnal boundary layers during CASES-99. J Appl Meteorol 42:1649–1666

    Article  Google Scholar 

  • Sun J (2007) Tilt corrections over complex terrain and their implication for CO\(_2\) transport. Boundary-Layer Meteorol 124:143–159

    Article  Google Scholar 

  • Sun J (2011) Vertical variations of the mixing lengths during CASES-99. J Appl Meteor Clim 50:2030–2041

    Article  Google Scholar 

  • Sun J, Mahrt L, Banta RM, Pichugina YL (2012) Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J Atmos Sci 69:338–351

    Article  Google Scholar 

  • Sun J, Lenschow DH, Mahrt L, Nappo C (2013) The relationships among wind, horizontal pressure gradient, and turbulent momentum transport during CASES-99. J Atmos Sci 70:3397–3414

    Article  Google Scholar 

  • Sun J, Mahrt L, Nappo C, Lenschow DH (2015) Wind and temperature oscillations generated by wave-turbulence interactions in the stably stratified boundary layer. J Atmos Sci 72:1484–1503

    Article  Google Scholar 

  • Sun J, Mahrt L (1995) Determination of surface fluxes from the surface radiative temperature. J Atmos Sci 52(8):1096–1106

    Article  Google Scholar 

  • Sun J, Massman W (1999) Ozone transport during the California ozone deposition experiment. J Geophys Res 104(D10):11,939–11,948

    Article  Google Scholar 

  • Tennekes H, Lumley HL (1972) A first course in turbulence. The MIT Press, Cambridge

    Google Scholar 

  • van de Wiel B, Moene A, Steeneveld G, Hartogensis O, Holtslag A (2007) Predicting the collapse of turbulence in stably stratified boundary layers. Flow Turbul Combust 79(3):251–274

    Article  Google Scholar 

  • van de Wiel BJH, Moene AF, Jonker HJJ, Baas P, Basu S, Donda JMM, Sun J, Holtslag AAM (2012) The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J Atmos Sci 69:3116–3127

    Article  Google Scholar 

  • Von Kármán T (1930) Mechanische Ähnlichkeit und turbulenz (Mechanical Similarity and Turbulence). Nachr Ges Wiss Göttingen Math Phys Klasse

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150

    Article  Google Scholar 

  • Williams A, Hacker J (1992) The composite shape and structure of coherent eddies in the convective boundary layer. Boundary-Layer Meteorol 61(3):213–245

    Article  Google Scholar 

  • Zilitinkevich SS (1995) Non-local turbulent transport: pollution dispersion aspects of coherent structure of convective flows. WIT Trans Ecol Environ 6:53–60

    Google Scholar 

  • Zilitinkevich SS, Hunt J, Esau IN, Grachev A, Lalas D, Akylas E, Tombrou M, Fairall C, Fernando H, Baklanov A et al (2006) The influence of large convective eddies on the surface-layer turbulence. Q J R Meteorol Soc 132(618):1426–1456

    Article  Google Scholar 

  • Zilitinkevich SS, Elperin T, Kleeorin N, Rogachevskii I (2007) Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes. Boundary-Layer Meteorol 125:167–191

Download references

Acknowledgments

The authors thank three anonymous reviewers for their helpful comments, and acknowledge the field support from the Earth Observing Laboratory of the National Center for Atmospheric Research. Larry Mahrt received support from Grant AGS-1115011 from the National Science Foundation. The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jielun Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Lenschow, D.H., LeMone, M.A. et al. The Role of Large-Coherent-Eddy Transport in the Atmospheric Surface Layer Based on CASES-99 Observations. Boundary-Layer Meteorol 160, 83–111 (2016). https://doi.org/10.1007/s10546-016-0134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0134-0

Keywords

Navigation