Skip to main content
Log in

Characterization of the Marine Boundary Layer and the Trade-Wind Inversion over the Sub-tropical North Atlantic

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The stability of the lower troposphere along the east side of the sub-tropical North Atlantic is analyzed and characterized using upper air meteorological long-term records at the Canary Islands (Tenerife), Madeira (Madeira) and Azores (Terceira) archipelagos. The most remarkable characteristic is the strong stratification observed in the lower troposphere, with a strengthening of stability centred at levels near 900 and 800 hPa in a significant percentage of soundings (ranging from 17 % in Azores to 33 % in Güimar, Canary Islands). We show that this double structure is associated with the top of the marine boundary layer (MBL) and the trade-wind inversion (TWI) respectively. The top of the MBL coincides with the base of the first temperature inversion (\(\approx \)900 hPa) where a sharp change in water vapour mixing ratio is observed. A second temperature inversion is found near 800 hPa, which is characterized by a large directional wind shear just above the inversion layer, tied to the TWI. We find that seasonal and latitudinal variations of the height and strength of both temperature inversions are driven by large-scale subsiding air from the upper troposphere associated with the descent branch of the Hadley cell. Increased general subsidence in summertime enhances stability in the lower troposphere, more markedly in the southern stations, where the inversion-layer heights are found at lower levels enhancing the main features of these two temperature inversions. A simple conceptual model that explains the lower tropospheric inversion enhancement by subsidence is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albrecht BA (1984) A model study of downstream variations of the thermodynamic structure of the trade winds. Tellus 36A:187–202

    Article  Google Scholar 

  • Alappattu DP, Kunhikrishnan PK (2010) Observations of the thermodynamic structure of marine atmospheric boundary layer over Bay of Bengal, Northern Indian Ocean and Arabian Sea during premonsoon period. J Atmos Sol Terr Phy 72:1318–1326. doi:10.1016/j.jastp.2010.07.011

    Article  Google Scholar 

  • Arya SP (1988) Introduction to micrometeorology. Academic Press Inc./Harcourt Brace Jovanovich Publishers, San Diego, CA: 307 pp

  • Augstein E, Riehl H, Ostapoff F, Wagner V (1973) Mass and energy transports in an undisturbed atlantic trade-wind flow. Mon Weather Rev 101:101–111

    Article  Google Scholar 

  • Busch N, Ebel U, Kraus H, Schaller E (1982) The structure of the subpolar inversion-capped ABL. Arch Meteor Geophys Bioklimatol 31A:1–18

    Article  Google Scholar 

  • Cao G, Giambelluca TW, Stevens DE, Schroeder TA (2007) Inversion variability in the Hawaiian trade wind regime. J Clim 20:1145–1160

    Article  Google Scholar 

  • Ciesielski PE, Schubert WH, Johnson RH (2001) Diurnal variability of the marine boundary layer during ASTEX. J Atmos Sci 58:2355–2376

    Article  Google Scholar 

  • Cuevas E (1995) Estudio del comportamiento del ozono troposférico en el observatorio de Izaña (Tenerife) y su relación con la dinámica atmosférica. Ph D Thesis, Universidad Complutense de Madrid

  • Cuevas E, González Y, Rodríguez S, Guerra JC, Gómez-Peláez AJ, Alonso-Pérez S, Bustos J, Milford C (2013) Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere. Atmos Chem Phys 13:1973–1998

    Article  Google Scholar 

  • Dorta P (1994) Las inversiones térmicas en canarias. Investigaciones Geográficas 1996(15):109–126

    Google Scholar 

  • Dunion JP, Marron CS (2008) A reexamination of the Jordan mean tropical sounding based on awareness of the Saharan Air Layer: results from 2002. J Clim 21:5242–5253

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179

    Article  Google Scholar 

  • Grindinger CM (1992) Temporal variability of the trade wind inversion: measured with a boundary layer vertical profiler. MS thesis, Department of Meteorology, University of Hawaii at Manoa, 93 pp

  • Gutnick M (1958) Climatology of the trade-wind inversion in the Caribbean. Bull Am Meteorol Soc 39:410–420

    Google Scholar 

  • Hartmann D, Ockert-Bell M, Michelsen M (1992) The effect of cloud type on Earth’s energy balance: global analysis. J Clim 5:1281–1304

    Article  Google Scholar 

  • Hodge MW (1956) Superadiabatic lapse rates of temperature in radiosonde observations. Mon Weather Rev 84:103–106

    Article  Google Scholar 

  • Hoskins BJ, Draghici I, Davies HC (1978) A new look at the \(\upomega \)-equation. Q J R Meteorol Soc 104:31–38

    Article  Google Scholar 

  • Jaatinen J, Kajosaari S (2000) Loran-C based windfinding in Meteorology. 29th annual convention & technical syposium of the international LORAN association (ILA). November 13–15, 2000, Washington DC

  • Johnson RH, Ciesielski PE, Kenneth AH (1995) Tropical inversions near the \(0\,^{{\circ }}\text{ C }\) level. J Atmos Sci 53(13):1838–1855

    Article  Google Scholar 

  • Johnson RH, Rickenbach TM, Rutledge SA, Ciesielski PE, Schubert WH (1999) Trimodal characteristics of tropical convection. J Clim 12:2397–2418

    Article  Google Scholar 

  • Karlsson J, Svensson G, Cardoso S, Teixeira J, Paradise S (2010) Subtropical cloud-regime transitions: boundary layer depth and cloud-top height evolution in models and observations. J Appl Meteorol Climatol 49(9):1845–1858. doi:10.1175/2010JAMC2338.1

    Article  Google Scholar 

  • Klein SA (1997) Synoptic variability of low-cloud properties and meteorological parameters in the subtropical trade wind boundary layer. J Climate 10(2018–2039):2018. doi:10.1175/1520-0442(1997)010:SVOLCP.2.0.CO;2

    Article  Google Scholar 

  • Kloesel KA, Albrecht BA (1989) Low-level inversions over the tropical Pacific-thermodynamic structure of the boundary layer and the above-inversion moisture structure. Mon Weather Rev 117:87–101

    Article  Google Scholar 

  • Ma CC, Mechoso CR, Robertson A, Arakawa A (1996) Peruvian stratus clouds and the tropical Pacific circulation: a coupled ocean-atmosphere GCM study. J Clim 9:1635–1645

    Article  Google Scholar 

  • Malkus JS (1956) On the maintenance of the trade winds. Tellus 8:335–350

    Article  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:52–54

    Article  Google Scholar 

  • Martín JL, Bethencourt J, Cuevas-Agulló E (2012) Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944. Climatic change. doi:10.1007/s10584-012-0407-7

  • Marzol MV (2001) El Clima. In: Fernández-Palacios JM, Martín-Esquivel JL (eds) “Naturaleza de las Islas Canarias. Ecología y conservación”. Publicaciones Turquesa, S/C de Tenerife: pp 87–93

  • Marzol MV, Yanes A, Romero C, Brito de Azevedo E, Prada S, Martins A (2006) Caratéristiques des précipitations dans les îles de la Macaronesia (Açores, Madére, Canaries et Cap Vert). XIX Colloque de l’Association Internationale de Climatologie, Épernay (Francia), pp 415–420

  • Mestre-Barceló A, Chazarra-Bernabé A, Pires V, Cunha S, Silva A, Marques J, Carvalho F, Mendes M, Neto J (2012) Climate atlas of the Archipelagos of the Canary Islands, Madeira and Azores. Air temperature and precipitation (1971–2000). Agencia Estatal de Meteorología and Instituto de Meteorologia de Portugal (eds), 80 pp, NIPO: 281-12-006-X

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216

    Article  Google Scholar 

  • Poon HT, Kwok YH, Sin KC (2000) Comparison of LORAN-C and GPS radiosonde measurements in Hong Kong. Technical Note No. 98, Hong Kong Observatory: 21 pp

  • Press WH, Teukolshy SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: the art of scientific computing. Cambridge University Press, Cambridge 963 pp

    Google Scholar 

  • Priestly MB (1994) Spectral analysis and time series. Academic Press, London 890 pp

    Google Scholar 

  • Philander S, Gu D, Halpern D, Lambert G, Lau NC, Li T, Pacanowski R (1996) Why the ITCZ is mostly north of the equator. J Clim 9:2958–2972

    Article  Google Scholar 

  • Prospero JM, Carlson TN (1981) Saharan air outbreaks over the tropical North Atlantic. Pure Appl Phys 119:667–691

    Google Scholar 

  • Rémillard J, Kollias P, Luke E, Wood R (2012) Marine boundary layer cloud observations in the Azores. J Clim 25:7381–7398. doi:10.1175/JCLI-D-11-00610.1

    Article  Google Scholar 

  • Riehl H (1979) Climate and weather in the tropics. Academic Press, London 623 pp

    Google Scholar 

  • Rodríguez S (1999) Comparación de las variaciones de ozono superficial asociadas a procesos de transporte sobre y bajo la inversión de temperatura subtropical en Tenerife. Degree Dissertation, University of La Laguna, Tenerife, Canary Islands, Spain

  • Rodríguez S, Alastuey A, Alonso-Pérez S, Querol X, Cuevas E, Abreu-Afonso J, Viana M, Pérez N, Pandolfi M, de la Rosa (2011) Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. Atmos Chem Phys 11:6663–6685. doi:10.5194/acp-11-6663-2011

    Article  Google Scholar 

  • Rouault M, Lee-Thorp AM, Lutjeharms JRE (1999) The Atmospheric Boundary Layer above the Agulhas current during alongcurrent winds. J Phys Oceanogr 30:40–50

    Article  Google Scholar 

  • Santos FD, Valente MA, Miranda PMA, Azevedo EB, Tome AR, Coelho F (2004) Climate change scenarios in the Azores and Madeira Islands. World Res Rev 16(4):473–491

    Google Scholar 

  • Schubert WH, Ciesielski PE, Richardson CL, Johnson H (1995) Dynamical adjustment of the trade wind inversion layer. J Atmos Sci 52(16):2941–2952

    Article  Google Scholar 

  • Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027

    Article  Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24

    Google Scholar 

  • Sempreviva AM, Gryning SE (2000) Mixing height over water and its role on the correlation between temperature and humidity fluctuations in the unstable surface layer. Boundary-Layer Meteorol 97:273–291

    Article  Google Scholar 

  • Slonaker RL, Schwartz BE, Emery WJ (1996) Occurrence of nonsurface superadiabatic lapse rates within RAOB data. Wea Forecast 11:350–359

    Article  Google Scholar 

  • Schultz DM, Schumacher PN, Doswell CA (2000) The intricacies of instabilities. Mon Weather Rev 128:4143–4148

    Article  Google Scholar 

  • Stone PH, Carlson JH (1979) Atmospheric lapse rate regimes and their parameterization. J Atmos Sci 36:415–423

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary-layer meteorology. Kluwer, Dordrecht: 670 pp

  • Sun DZ, Lindzen RS (1993) Distribution of tropical troposphericwater vapor. J Atmos Sci 50:1643–1660

    Article  Google Scholar 

  • Sutcliffe RC (1947) A contribution to the problem of development. Q J R Meteorol Soc 73:370–383

    Article  Google Scholar 

  • Tran LT (1995) Relationship between the inversion and rainfall on the Island of Maui. MS thesis, Department of Geography, University of Hawaii at Manoa: 115 pp

  • Tullot F (1956) El tiempo atmosférico de las Islas Canarias. Publicaciones Serie A (Memorias) del Instituto Nacional de Meteorología 26:15–23

  • Von Engeln A, Teixeira J, Wickert J, Buehler SA (2005) Using CHAMP radio occultation data to determine the top altitude of the Planetary Boundary Layer. Geophys Res Lett 32:L06815. doi:10.1029/2004GL022168

    Google Scholar 

  • Wang J, Rossow WB (1995) Determination of cloud vertical structure from upper-air observations. J Appl Meteorol 34:2243–2258

    Article  Google Scholar 

  • Wood R, Bretherton CS (2006) On the relationship between stratiform low cloud cover and lower-tropospheric stability. J Clim 19:6425–6432. doi:10.1175/JCLI3988.1

    Article  Google Scholar 

  • Yuter SE, Houze RA Jr (1995) Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: frecuency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon Weather Rev 123:1941–1963

    Article  Google Scholar 

  • Zhang YH, Zhang SD, Yi F (2009) Intensive radiosonde observations of lower tropospheric inversion layers over Yichang, China. J Atmos Sol Terr Phys 71:180–190. doi:10.1016/j.jastp.2008.10.008

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Canary Islands Government under contract number PI042005/034 and by the Global Atmospheric Watch programme of the Izaña Atmospheric Research Center from the State Meteorological Agency of Spain (AEMET). The radio soundings used in this study were performed by AEMET and the Instituto Português do Mar e da Atmosfera (IPMA). We wish to thank Larry Oolman, from the Department of Atmospheric Science, University of Wyoming, and to AEMET, for providing radiosonde data. The authors want to thank all radiosonde operators of Spanish and Portuguese stations for their work over more than 30 years that have made this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carrillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10546_2015_81_MOESM1_ESM.docx

S1 Statistical comparison of temperature series at three pressure levels between Santa Cruz (1997-2001) and Güimar (2003-2007). Results of Kolmógorov–Smirnov and Mann-Whitney nonparametric tests. (Doc 13 KB)

S2 Percentage of superadiabatic lapse rate (% SA) and fictitious inversion layers (% F). (Doc 15 KB)

10546_2015_81_MOESM3_ESM.docx

S3 Number and percentage of soundings in which the number of simultaneous inversions ʽNIʼ is zero, one, two, or more than two, within the 1000-700 hPa range, at each station. (Doc 13 KB)

10546_2015_81_MOESM4_ESM.ps

S4 Base height of MBL inversion (MBLI) (*) and trade-wind inversion (TWI) (□) vs vertical velocity (hPa s-1) in the 700-hPa range, as in Fig. 5 (right) at Azores, Madeira and Canary Islands (Güimar). (ps 173 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo, J., Guerra, J.C., Cuevas, E. et al. Characterization of the Marine Boundary Layer and the Trade-Wind Inversion over the Sub-tropical North Atlantic. Boundary-Layer Meteorol 158, 311–330 (2016). https://doi.org/10.1007/s10546-015-0081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0081-1

Keywords

Navigation