Skip to main content
Log in

Modelling of the Thermodynamical Diurnal Cycle in the Lower Atmosphere: A Joint Evaluation of Four Contrasted Regimes in the Tropics Over Land

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The diurnal cycle is an important mode of variability in the Tropics that is not correctly predicted by numerical weather prediction models. The African Monsoon Multidisciplinary Analyses program provided for the first time a large dataset to document the diurnal cycle over West Africa. In order to assess the processes and mechanisms that are crucial for the representation of the diurnal cycle, four different regimes that characterize the varying conditions encountered over land along a surface-temperature gradient are selected. A single-column modelling framework is used in order to relate the features of the simulated diurnal cycle to physical processes in these four distinct cases. Particular attention is given to providing realistic initial and boundary conditions at the surface and in the atmosphere, enabling the use of independent data for the evaluation of the simulations. The study focuses on the simulation of the surface energy budget and low-level characteristics and analyzes the balance between cloud/surface/boundary-layer processes at the sub-diurnal time scale. The biases and drawbacks of the simulations are found to change along the temperature gradient but they always involve the representation of clouds. They also explain parts of the bias obtained with the same model when used in a less constrained configuration. Surface–atmosphere–cloud interactions arising at the sub-diurnal time scale are invoked to explain the distinct features of the low-level diurnal cycle observed over West Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Those amounts of precipitation are relatively small but note that from 20 to 30 June 2006 there was a large-scale subsidence over West Africa that inhibited convection as shown by Janicot et al. (2008).

References

  • Agusti-Panareda A, Vasiljevic D, Beljaars A, Bock O, Guichard F, Nuret M, Lafore JP, Mendez AG, Andersson E, Bechtold P, Fink A, Hersbach H, Ngamini JB, Parker D, Redelsperger JL, Tompkins A (2009) Radiosonde humidity bias correction over the West African region for the special AMMAreanalysis at ECMWF. Q J R Meteorol Soc 135:595–617

    Article  Google Scholar 

  • Agusti-Panareda A, Beljaars A, Ahlgrimm M, Balsamo G, Bock O, Forbes R, Ghelli A, Guichard F, Köhler M, Meynadier R, Morcrette JJ (2010) The ECMWF re-analysis for the AMMA observational campaign. Q J R Meteorol Soc 136:1457–1472

    Article  Google Scholar 

  • Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass-flux convection scheme for regional and global models. Q J R Meteorol Soc 127:869–886

    Article  Google Scholar 

  • Bechtold P, Chaboureau JP, Beljaars A, Betts AK, Kohler M, Miller M, Redelsperger J-L (2004) The simulation of the diurnal cycle of convective precipitation over land in a global model. Q J R Meteorol Soc 130:3319–3337

    Article  Google Scholar 

  • Betts AK (1992) FIFE atmospheric boundary layer budget methods. J Geophys Res Atmos 97(D17):18523–18531

    Article  Google Scholar 

  • Betts AK, Jakob C (2002a) Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBAdata. J Geophys Res Atmos 107(D20):8045. doi:10.1029/2001JD000427

    Google Scholar 

  • Betts AK, Jakob C (2002b) Study of diurnal cycle of convective precipitation over Amazonia using a single column model. J Geophys Res Atmos 107(D23):4732. doi:10.1029/2002JD002264

    Article  Google Scholar 

  • Boone A, de Rosnay P, Basalmo P, Beljaars A, Chopin F, Decharme B, Delire C, Ducharne A, Gascoin S, Grippa M, Guichard F, Gusev Y, Harris P, Jarlan L, Kergoat L, Mougin E, Nasonova O, Norgaard A, Orgeval T, Ottlé C, Poccard-Leclercq I, Polcher J, Sandholt I, Saux-Picart S, Taylor C, Xue Y (2009) The AMMA land surface model intercomparison project. Bull Am Meteorol Soc 90:1865–1880. doi:10.1175/2009BAMS2786.1

  • Betts AK, Ball JH, Beljaars AC, Miller MJ, Viterbo PA (1996) The land surface–atmosphere interaction: a review based on observational and global modelling perpective. J Geophys Res Atmos 101(D3):7209–7225. doi:10.1029/1995JD02135

    Article  Google Scholar 

  • Bouniol D, Couvreux F, Kamsu-Tamo PH, Leplay M, Guichard F, Favot F, O’Connor EJ (2012) Diurnal and seasonal cycles of cloud occurrences, types and radiative impact over West Africa. J Appl Meteorol 51:534–553. doi:10.1175/JAMC-D-11-051.1

    Google Scholar 

  • Braam M, Vila-Guerau de Arellano J, Gorska M (2011) Boundary layer characteristics over homogeneous and heterogeneous surfaces simulated by MM5 and DALES. J Appl Meteorol 50:1372–1386

    Google Scholar 

  • Couvreux F, Guichard F, Austin P, Chen F (2009) Nature of the mesoscale boundary layer height and water vapor variability observed 14 June 2002 during the IHOP\_2002 campaign. Mon Weather Rev 137:414–432

    Article  Google Scholar 

  • Couvreux F, Rio C, Guichard F, Lothon M, Canut G, Bouniol D, Gounou A (2012) Initiation of daytime local convection in a semi-arid region analyzed with large-eddy simulations and AMMA observations. Q J R Meteorol Soc 138:56–71. doi:10.1002/aj.903

    Article  Google Scholar 

  • Cuesta J, Marsham J, Parker DJ, Flamant C (2009) Dynamical mechanims controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer. Atmos Sci Lett 10:34–42

    Article  Google Scholar 

  • Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126:1–30

    Article  Google Scholar 

  • Dai A (2001) Global precipitation and thunderstorm frequencies. Part II: diurnal variations. J Clim 14(1112):1128

    Google Scholar 

  • Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 17:930–951

    Article  Google Scholar 

  • Del Genio AD, Wu J (2010) The role of entrainment in the diurnal cycle of continental convection. J Clim 23:2722–2738

    Article  Google Scholar 

  • Freedman JM, Fitzjarrald DR (2001) Postfrontal airmass modification. J Hydrometeorol 2:419–437

    Article  Google Scholar 

  • Gounou A, Guichard F, Couvreux F (2012) Observations of diurnal cycles over a West-African meridional transect: pre-monsoon and full-monsoon seasons. Boundary-Layer Meteorol 144:329–357. doi:10.1007/s10546-012-9723-8

  • Goutorbe JP, Noilhan J, Lacarrere P, Braud I (1997) Modelling of the atmospheric column over the central sites during HAPEX-Sahel. J Hydrol 188–189:1017–1039

    Article  Google Scholar 

  • Guichard F, Redelsperger JL, Lafore JP (2000) Cloud-resolving simulation of convective activity during TOGA–COARE, sensitivity to external sources of uncertainties. Q J R Meteorol Soc 126:3667–3695

    Article  Google Scholar 

  • Guichard F, Petch C, Redelsperger JL, Bechtold P, Chaboureau JP, Cheinet S, GrabowskiW Grenier H, Jones CG, Köhler M, Piriou JM, Tailleux R, Tomasini M (2004) Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q J R Meteorol Soc 130:3139–3172

    Article  Google Scholar 

  • Guichard F, Kergoat L, Mougin E, Timouk F, Baup F, Hiernaux P, Lavenu F (2009) Surface thermodynamics and radiative budget in the Sahelian Gourma: seasonal and diurnal cycles. J Hydrol 375:161–177

    Article  Google Scholar 

  • Hastenrath S (1995) Climate dynamics of the tropics. Kluwer, New York 488 pp

    Google Scholar 

  • Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2:36–50

    Article  Google Scholar 

  • Janicot S, Thorncroft CD, Ali A, Asencio N, Berry G, Bock O, Bourles B, Caniaux G, Chauvin F, Deme A, Kergoat L, Lafore JP, Lavaysse C, Lebel T, Marticorena B, Mounier F, Nedelec P, Redelsperger JL, Ravegnani F, Reeves CE, Roca R, de Rosnay P, Schlager H, Sultan B, Tomasini M, Ulanovsky A (2008) Large-scale overview of the summer monsoon over West Africa during the AMMA field experiment in 2006. Ann Geophys 26:2569–2595

    Article  Google Scholar 

  • Karbou F, Gérard E, Rabier F (2010) Global 4DVAR assimilation and forecast experiments using AMSU observations over land. Part I: impacts of various land surface emissivity parameterizations. Weather Forecast 25:5–19. doi:10.1175/2009WAF2222243.1

    Article  Google Scholar 

  • Knippertz P, Fink AH, Schuster R, Trentmann J, Schrage JJM, Yorke C (2011) Ultra-low clouds over the southern West African monsoon region. Geophys Res Lett 38:L21808. doi:10.1029/2011GL049278

    Article  Google Scholar 

  • Lafore JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Hreil P, Mascart P, Masson V, Pinty JP, Redelsperger JL, Richard E (1998) The meso-NH atmospheric simulation system. Part 1: adiabatic formulation and control simulations. Ann Geophys 16:90–109

    Article  Google Scholar 

  • Lothon M, Said F, Lohou F, Campistron B (2008) Observation of the diurnal cycle in the low troposphere of West Africa. Mon Weather Rev 136:3477–3500

    Article  Google Scholar 

  • Love TB, Kumar V, Xie P, Thiaw W (2004) A 20-year daily Africa precipitation cllimatology using satellite and gauge data. In: Proceedings of 14th conference on applied climatology, Seattle

  • Mahrt L (1991) Boundary-layer moisture regimes. Q J R Meteorol Soc 117:151–176

    Article  Google Scholar 

  • Masson V, Champeaux J-L, Chauvin F, Meriguet C, Lacaze R (2003) A global database of land surface parameters at 1 km resolution in meteorological and climate models. J Clim 16:1261–1282

    Article  Google Scholar 

  • Medeiros B, Hall A, Stevens B (2005) What controls the mean depth of the PBL? J Clim 18:3157–3172

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102(D14):16663–16682. doi:10.1029/97JD00237

    Article  Google Scholar 

  • Nesbitt SW, Zipser EJ (2003) The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J Clim 16(1456):1485

    Google Scholar 

  • Nikulin G, Jones C, Giorgi F, Asrar G, Buchner M, Cerezo-Mota R, Christensen O, Dequé M, Fernandez J, Haensler A, van Meijgaard E, Samuelsson P, Sylla M, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25:6057–6078. doi:10.1175/JCLI-D-11-00375.1

    Article  Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:336–349

    Article  Google Scholar 

  • Parker DJ, Burton RR, Diongue-Niang A, Ellis RJ, Felton M, Taylor CM, Thorncroft CD, Bessemoulin P, Tompkins AM (2005) The diurnal cycle of the West African monsoon circulation. Q J R Meteorol Soc 131:2839–2860

    Article  Google Scholar 

  • Parker DJ, Fink A, Janicot S, Ngamini JB, Douglas M, Afiesimama E, Agusti-Panareda A, Beljaars A, Dide F, Diedhiou A, Lebel T, Polcher J, Redelsperger JL, Thorncroft C, Wilson GA (2008) The AMMA radiosonde program and its implications for the future of atmospheric monitoring over Africa. Bull Am Meteorol Soc 89:1015–1027

    Article  Google Scholar 

  • Pergaud J, Masson V, Malardel S, Couvreux F (2009) A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-Layer Meteorol 132:83–106. doi:10.1007/s10546-009-9388-0

    Article  Google Scholar 

  • Peyrillé P, Lafore JP (2007) An idealized two-dimensional framework to study the West African monsoon. Part II: large-scale advection and the diurnal cycle. J Atmos Sci 64:2783–2803

    Article  Google Scholar 

  • Peyrillé P, Lafore JP, Redelsperger JL (2007) An idealized two-dimensional framework to study the West African monsoon. Part I: validation and key controlling factors. Atmos Sci 64:2765–2782

    Article  Google Scholar 

  • Pinty J-P, Jabouille P (1998) A mixed-phase cloud parameterization for use in mesoscale nonhydrostatic model: simulations of a squall line and of orographic precipitations. In: Proceedings of conference on cloud physics, Everett, WA, USA. American Meteorological Society, Washington DC, pp 217–220

  • Redelsperger JL, Thorncroft C, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis (AMMA): an international research project and field campaign. Bull Am Meteorol Soc 87:1739–1746

    Article  Google Scholar 

  • Rio C, Hourdin F, Grandpeix JY, Lafore JP (2009) Shifting the diurnal cycle of parameterized convection. Geophys Res Let 36:L0780

    Article  Google Scholar 

  • Rio C, Grandpeix J-Y, Hourdin F, Guichard F, Couvreux F, Lafore J-P, Fridlind A, Mrowiec A, Roehrig R, Rochetin N, Lefebvre M-P, Idelkadi A (2013) Control of deep convection by sub-cloud lifting processes: the ALP closure in the LMDZ5B general circulation model. Clim Dyn 40:2271–2292

    Article  Google Scholar 

  • Roehrig R, Bouniol D, Guichard F, Hourdin F, Redelsperger JL (2013) The present and future of the West African monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. J Clim. doi:10.1175/JCLI-D-12-00505.1

  • Santanello JA, Friedl MA, Ek MB (2007) Convective planetary boundary layer interactions with the land surface at diurnal time scales: diagnostics and feedbacks. J Hydrometeorol 8:1082–1097

    Article  Google Scholar 

  • Santanello JA, Peters-Lidard CD, Kumar SV, Alonge C, Tao WK (2009) A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J Hydrometeorol 10:577–599

    Article  Google Scholar 

  • Schlemmer L, Hohenegger C, Schmidli J, Bretherton CS, Schar C (2011) An idealized cloud-resolving framework for the study of midlatitiude diurnal convection over land. J Atmos Sci 68:1041–1057

    Article  Google Scholar 

  • Schrage JM, Fink AH (2012) Nocturnal continental low-level stratus over Tropical west Africa: observations and possible mechanisms controlling its onset. Mon Weather Rev 140:1794–1809

    Article  Google Scholar 

  • Stratton RA, Stirling AJ (2012) Improving the diurnal cycle of convection in GCMs. Q J R Meteorol Soc. doi:10.1002/qj.991

    Google Scholar 

  • Svensson G, Holtslag AAM, Kumar V, Mauritsen T, Steeneveld GJ, Angevine WM, Bazile E, Beljaars A, de Bruijn EIF, Cheng A, Conangla L, Cuxart J, Ek M, Falk MJ, Freedman F, Kitagawa H, Larson VE, Lock A, Mailhot J, Masson V, Park S, Pleim J, Söderberg S, Weng W, Zampieri M (2011) Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of singlecolumn models: the second GABLS experiment. Boundary-Layer Meteorol 140:177–206. doi:10.1007/s10546-011-9611-7

    Google Scholar 

  • Tegen I, Hollrig P, Chin M, Fung I, Jacob D, Penner J (1997) Contribution of different aerosol species to the global aerosol extinction optical thickness: estimates from model results. J Geophys Res Atmos 102(D20):23895–23915

    Article  Google Scholar 

  • Van Heerwaarden CC, Vila-Guerau de Arellano J, Gounou A, Guichard F, Couvreux F (2010) Understanding the daily cycle of surface evapotranspiration: a new method to quantify the influence of forcings and feedbacks. J Hydrometeorol. doi:10.1175/2010JHM1272.1

  • Yang CY, Slingo J (2001) The diurnal cycle in the tropics. Mon Weather Rev 129:784–801

    Article  Google Scholar 

  • Zheng X, Eltahir EAB (1998) The role of vegetation in the dynamics of West African monsoons. J Clim 11:2078–2096

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Rémi Cambra and Alexis Fradet who worked on this subject during their internship for a month and to Jean-Marcel Piriou for providing the ARPEGE runs. We thank Florence Favot for her everyday help and her capacity of always rapidly solving computer problems. The authors would like to thank the three anonymous reviewers for their careful comments. The authors are grateful to the AMMA International Program and to the whole dataset that was collected during this campaign. The Niamey AMF data were obtained from the Atmospheric Radiation Measurement (ARM) Program Archive of the Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Couvreux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couvreux, F., Guichard, F., Gounou, A. et al. Modelling of the Thermodynamical Diurnal Cycle in the Lower Atmosphere: A Joint Evaluation of Four Contrasted Regimes in the Tropics Over Land. Boundary-Layer Meteorol 150, 185–214 (2014). https://doi.org/10.1007/s10546-013-9862-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9862-6

Keywords

Navigation