Skip to main content
Log in

Long-Term Mean Wind Profiles Based on Similarity Theory

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We provide general forms for long-term mean wind profiles from similarity-based wind profiles, beginning with a probabilistic adaptation of Monin–Obukhov similarity theory. We develop an analytical formulation for the stability distributions prevailing in the atmospheric surface layer, which in turn facilitates the derivation of a long-term mean wind profile based on Monin–Obukhov similarity theory. The modelled stability distributions exhibit good agreement with measurements from sites having different local conditions. The long-term wind profile formulation is further extended to include the influence of the depth of the atmospheric boundary layer (h), which becomes relevant for heights above h/3, and the resultant long-term ‘tall’ profile form also matches observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beljaars ACM, Bosveld FC (1997) Cabauw data for the validation of land surface parametrization schemes. J Clim 10: 1172–1193

    Article  Google Scholar 

  • Bershadskii A (1997) Some generalization of self-similarity. Europhys Lett 39(6): 587–592

    Article  Google Scholar 

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67: 3095–3102

    Article  Google Scholar 

  • Brown AR, Beljaars ACM, Hersbach H (2006) Errors in parameterizations of convective boundary-layer turbulent momentum mixing. Q J Roy Meteorol Soc 132: 1859–1876

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189

    Article  Google Scholar 

  • Carl DM, Tarbell TC, Panofsky HA (1973) Profiles of wind and temperature from towers over homogeneous terrain. J Atmos Sci 30(30): 788–794

    Article  Google Scholar 

  • Cheng Y, Parlange MB, Brutsaert W (2005) Pathology of Monin–Obukhov similarity in the stable boundary layer. J Geophys Res 110: D06,101

    Google Scholar 

  • Esau IN (2004) Simulation of Ekman boundary layers by a large-eddy model with dynamic mixed subfilter closure. Environ Fluid Mech 4: 273–303

    Article  Google Scholar 

  • Foken T (2004) 50 years of the Monin–Obukhov similarity theory. In: 16th Symposium on boundary layers and turbulence. Amer. Met. Soc., Portland, ME, Fundamental studies of turbulence: observations, theory, and models session

  • Gradshteyn I, Ryzhik I (2000) Tables of integrals, series, and products, 6th edn. Academic Press, San Diego, p 1163

    Google Scholar 

  • Gryning SE, Batchvarova E, Brümmer B, Jørgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Boundary-Layer Meteorol 124(2): 371–379

    Article  Google Scholar 

  • Gryning SE, Soegaard H, Batchvarova E (2009) Comparison of regional and ecosystem CO2 fluxes. Boreal Environ Res 14(1): 204–212

    Google Scholar 

  • Högstrom U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78: 215–246

    Article  Google Scholar 

  • Holtslag AAM (1984) Estimates of diabatic wind speed proles from near-surface weather observations. Boundary-Layer Meteorol 29: 225–250

    Article  Google Scholar 

  • Jensen NO, Petersen EL, Troen I (1984) Extrapolation of mean wind statistics with special regard to wind energy applications. World climate programme report, WMO, report # WCP-86

  • Khanna S, Brasseur JG (1997) Analysis of Monin–Obukhov similarity from large-eddy simulation. J Fluid Mech 345: 251–286

    Article  Google Scholar 

  • Lovejoy S, Schertzer D, Lilley M, Strawbridge KB, Radkevich A (2008) Scaling turbulent atmospheric stratification. I: Turbulence and waves. Q J Roy Meteorol Soc 134(631B): 277–300

    Article  Google Scholar 

  • Mahrt L (1975) The influence of momentum advections on a well-mixed layer. Q J Roy Meteorol Soc 101: 1–112

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical dluid mechanics, vol 1. The MIT Press, Cambridge, p 769

    Google Scholar 

  • Panofsky HA (1973) Tower micrometeorology. In: Haugen DA (ed) Workshop on micrometeorology. Amer. Meteor. Soc., Boston, pp 151–176

  • Panofsky H, Dutton J (1984) Atmospheric turbulence. Wiley, New York, p 397

    Google Scholar 

  • Perger WF, Bhalla A, Nardin M (1993) A numerical evaluator for the generalized hypergeometric series. Comput Phys Commun 77: 249–254

    Article  Google Scholar 

  • Roach K (1997) Meijer G function representations. In: ISSAC ’97: proceedings of the 1997 international symposium on symbolic and algebraic computation. ACM, New York, NY, USA, pp 205–211

  • Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning SE, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet YA, Rufeux D, Salmond JA, Schatzmann M, Voogt JA (2005) BUBBLE-f́b-an urban boundary layer meteorology project. Theor Appl Climatol 81: 231–261

    Article  Google Scholar 

  • Troen I, Petersen EL (1989) European wind atlas. Risø National Laboratory, Roskilde

    Google Scholar 

  • Zilitinkevich SS, Esau IN (2005) Resistance and heat-transfer laws for stable and neutral planetary boundary layers: old theory advanced and re-evaluated. Q J Roy Meteorol Soc 131: 1863–1892

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, M., Gryning, SE. Long-Term Mean Wind Profiles Based on Similarity Theory. Boundary-Layer Meteorol 136, 377–390 (2010). https://doi.org/10.1007/s10546-010-9509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9509-9

Keywords

Navigation