Skip to main content
Log in

A New Method for the Determination of Area-Averaged Turbulent Surface Fluxes from Low-Level Flights Using Inverse Models

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The low-level flight method (LLF) has been combined with linear inverse models (IM) resulting in an LLF+IM method for the determination of area-averaged turbulent surface fluxes. With this combination, the vertical divergences of the turbulent latent and sensible heat fluxes were calculated from horizontal flights. The statistical errors of the derived turbulent surface fluxes were significantly reduced. The LLF+IM method was tested both in numerical and field experiments. Large-eddy simulations (LES) were performed to compare ‘true’ flux profiles with ‘measurements’ of simulated flights in an idealised convective boundary layer. Small differences between the ‘true’ and the ‘measured’ fluxes were found, but the vertical flux divergences were correctly calculated by the LLF+IM method. The LLF+IM method was then applied to data collected during two flights with the Helipod, a turbulence probe carried by a helicopter, and with the research aircraft Do 128 in the LITFASS-98 field campaign. The derived surface fluxes were compared with results from eddy-covariance surface stations and with large-aperture scintillometer data. The comparison showed that the LLF+IM method worked well for the sensible heat flux at 77 and 200 m flight levels, and also for the latent heat flux at the lowest level. The model quality control indicated failures for the latent heat flux at the 200 m level (and higher), which were probably due to large moisture fluctuations that could not be modelled using linear assumptions. Finally the LLF+IM method was applied to more than twenty low-level flights from the LITFASS-2003 experiment. Comparison with aggregated surface flux data revealed good agreement for the sensible heat flux but larger discrepancies and a higher statistical uncertainty for the latent heat flux

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angevine W.M., Avery S.K., and Kok G.L. (1993). ‘Virtual Heat Flux Measurements from a Boundary-Layer Profiler-RASS Compared to Aircraft Measurements’. J. Appl. Meteorol 32:1901–1907

    Article  Google Scholar 

  • Bange J., Roth R. (1999). ‘Helicopter-Borne Flux Measurements in the Nocturnal Boundary Layer Over Land – a Case Study’. Boundary-Layer Meteorol 92:295–325

    Article  Google Scholar 

  • Bange J., Beyrich F., and Engelbart D.A.M. (2002). ‘Airborne Measurements of Turbulent Fluxes during LITFASS-98: A Case Study about Method and Significance’. Theor. Appl. Climatol. 73:35–51

    Article  Google Scholar 

  • Berger, F.: 2002, ‘Surface Radiant and Energy Flux Densities inferred from Satellite Data for the BALTEX Watershed’. Boreal. Env. Res. pp. 343–351

  • Betts A., Desjardins R., MacPherson J., and Kelly R. (1990). ‘Boundary-Layer Heat and Moisture Budgets from FIFE’. Boundary-Layer Meteorol 50:109–137

    Article  Google Scholar 

  • Betts A., Desjardins R., MacPherson J., and Kelly R. (1992). ‘Budget Analysis of the Boundary Layer Grid Flights During FIFE 1987’. J. Geophys. Res. 97:18533–18546

    Google Scholar 

  • Beyrich F., Berger F., de Bruin H., Foken T., Kohsiek W., Richter S., and Weisensee U. (2002a). ‘Experimental Determination of Turbulent Fluxes over the Heterogeneous LITFASS Area – Selected Results from the LITFASS-98 experiment’. Theor. Appl. Climatol. 73:19–34

    Article  Google Scholar 

  • Beyrich F., de Bruin H.A.R., Meijninger W.M.L., Schipper J.W., and Lohse H. (2002b). ‘Results from One-Year Continuous Operation of a Large Aperture Sintillometer over a Heterogeneous Land Surface’. Boundary-Layer Meteorol 105:85–97

    Article  Google Scholar 

  • Beyrich F., Herzog H.-J., and Neisser J. (2002c). ‘The LITFASS Project of DWD and the LITFASS-98 Experiment: The Project Strategy and the Experimental Setup’. Theor. Appl. Climatol. 73:3–18

    Article  Google Scholar 

  • Browne L.W.B., Antonia R.A., and Rajagopalan S. (1983). ‘The Spatial Derivative of Tempeature in a Turbulent Flow and Taylor’s Hypothesis’. Phys. Fluids 26(5):1222–1227

    Article  Google Scholar 

  • Brümmer B., and Thiemann S. (2002). ‘The Atmospheric Boundary Layer in an Arctic Wintertime On-Ice Air Flow’. Boundary-Layer Meteorol 104:53–72

    Article  Google Scholar 

  • Burns S.P., Khelif D., Friehe C.A., Williams A.G., Hignett P., Grant A.L.M., Hacker J.M., Rogers D.P., Bradley E.F., Weller R.A., Cronin M.F., Anderson S.P., Fairall C.W., and Paulson C.A. (1999). ‘Comparison of Aircraft, Ship, and Buoy Meteorological Measurements from TOGA COARE’. J. Geophys. Res. 104:30853–30883

    Article  Google Scholar 

  • Busch U., Hofmann M., Jacobi C., and Roth R. (1996). ‘Errors in Aircraft Measurements of Turbulent Fluxes in a Boundary Layer with Strong Convection’. Phys. Chem. Earth 21:393–397

    Article  Google Scholar 

  • Chou S.-H., Atlas D., and Yeh E.-N. (1985). ‘Turbulence in a Convective Marine Atomospheric Boundary Layer’. J. Atmos. Sci. 43:547–564

    Article  Google Scholar 

  • Cleugh H.A., Raupach M.R., Briggs P.R., and Coppin P.A. (2004). ‘Regional-Scale Heat and Water Vapour Fluxes in an Agricultural Landscape: An Evaluation of CBL Budget Methods at OASIS’. Boundary-Layer Meteorol 110:99–137

    Article  Google Scholar 

  • Corsmeier U., Hankers R., and Wieser A. (2001). ‘Airborne Turbulence Measurements in the Lower Troposphere Onboard the Research Aircraft Dornier 128-6. D-IBUF’. Meteorol. Z., N. F 4:315–329

    Article  Google Scholar 

  • de Arellano J.V.-G., Gioli B., Miglietta F., Jonker H.J.J., Baltink H.K., Hutjes R.W.A., and Holtslag A.A.M. (2004). ‘Entrainment Process of Carbon Dioxide in the Atmospheric Boundary Layer’. J. Geophys. Res 109(D18110), doi:10.1029/2004JD004725

  • Deardorff J.W. (1970). ‘Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection’. J. Atmos. Sci 27:1211–1213

    Article  Google Scholar 

  • Deardorff J.W. (1974). ‘Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’. Boundary-Layer Meteorol 7:81–106

    Google Scholar 

  • Deardorff J.W. (1980). ‘Stratocumulus-Capped Mixed Layers derived from a Three-Dimensional Model’. Boundary-Layer Meteorol 18:495–527

    Article  Google Scholar 

  • Denmead O.T., Raupach M.R., Dunin F.X., Cleugh H.A., and Leuning R. (1996). ‘Boundary Layer Budgets for Regional Estimates of Scalar Fluxes’. Global Change Biol 2:255–264

    Article  Google Scholar 

  • Desjardins R.L., MacPherson J.I., Schuepp P.H., and Karanja F. (1989). ‘An Evaluation of Aircraft Flux Measurements of CO2 Water Vapor and Sensible Heat’. Boundary-Layer Meteorol 47:55–69

    Article  Google Scholar 

  • Durand P., Dupuis H., Lambert D., Bnech B., Druilhet A., Katsaros K., Taylor P., and Weill A. (1998). ‘Comparison of Sea Surface Flux Measured by Instrumented Aircraft and Ship during SOFIA and SEMAPHORE Experiments’. J. Geophys. Res 103(C11):25125–25136

    Article  Google Scholar 

  • Engelbart D.A.M., and Bange J. (2002). ‘Determination of Boundary-Layer Parameters using Wind Profiler/RASS and Sodar/RASS in the Frame of the LITFASS-Project’. Theor. Appl. Climatol 73:53–65

    Article  Google Scholar 

  • Flamant C., Pelon J., Flamant P.H., and Durand P. (1997). ‘LIDAR Determination of the Entrainment Zone Thickness at the Top of the Unstable Marine Atmospheric Boundary Layer’. Boundary-Layer Meteorol 83:247–284

    Article  Google Scholar 

  • Grant A. (1986). ‘Observations of Boundary Layer Structure Made during the 1981 KONTUR Experiment’. Quart. J. Roy. Meteorol. Soc 112:825–841

    Article  Google Scholar 

  • Grossman R.L. (1992a). ‘Convective Boundary Layer Budgets of Moisture and Sensible Heat over an Unstressed Prairie’. J. Geophys. Res 97:18425–18438

    Google Scholar 

  • Grossman R.L. (1992b). ‘Sampling Errors in the Vertical Fluxes of Potential Temperature and Moisture Measured by Aircraft During FIFE’. J. Geophys. Res 97:18439–18443

    Google Scholar 

  • Grunwald J., Kalthoff N., Corsmeier U., and Fiedler F. (1996). ‘Comparison of Areally Averaged Turbulent Fluxes over Non-Homogeneous Terrain: Results from the EFEDA-Field Experiment’. Boundary-Layer Meteorol 77:105–134

    Article  Google Scholar 

  • Grunwald J., Kalthoff N., Fiedler F., and Corsmeier U. (1998). ‘Application of Different Flight Strategies to Determine Areally Averaged Turbulent Fluxes’. Contr. Atmos. Phys 71:283–302

    Google Scholar 

  • Gryning S.-E., and Batchvarova E. (1999). ‘Regional Heat Flux over the NOPEX Area Estimated from the Evolution of the Mixed Layer’. Agric. For. Meteorol 98–99:159–167

    Article  Google Scholar 

  • Haenel H.-D., and Grünhage L. (1999). ‘Footprint Analysis: A Closed Analytical Solution Based on Height-Dependent Profiles of Wind Speed And Eddy Viscoxity’. Boundary-Layer Meteorol 93:395–409

    Article  Google Scholar 

  • Hankers, R.: 1989, ‘The Equipment of a Research Aircraft with Emphasis on Meteorological Experiments’, in Soc. of Flight Test Eng., 20th Ann. Symp. Reno, Nevada, 7 pp

  • Heinemann G. (2002). ‘Aircraft-based Measurements of Turbulence Structures in the Katabatic Flow over Greenland’. Boundary-Layer Meteorol 103:49–81

    Article  Google Scholar 

  • Isaac P.R., Mcaneney J., Leuning R., and Hacker J.M. (2004). ‘Comparison of Aircraft and Ground-based Flux Measurements during OASIS95’. Boundary-Layer Meteorol 110:39–67

    Article  Google Scholar 

  • Jacobi C., Scherf A., Siemer A.H., and Roth R. (1995). ‘On the Influence of Sensor Ineria on the Estimation of Turbulent Fluxes from Aircraft Measurements’. Boundary-Layer Meteorol 76:97–108

    Article  Google Scholar 

  • Kelly R.D., Smith E.A., and MacPherson J.I. (1992). ‘A Comparison of Surface Sensible and Latent Heat Fluxes from Aircraft and Surface Measurements in FIFE 1987’. J. Geophys. Res 97:18445–18453

    Article  Google Scholar 

  • Lambert D., and Durand P. (1998). ‘Aircraft to Aircraft Intercomparison during SEMAPHORE’. JGR 103(C11):25109–25123

    Article  Google Scholar 

  • Lenschow D.H., and Stankov B.B. (1986). ‘Length Scales in the Convective Boundary Layer’. J. Atmos. Sci 43:1198–1209

    Article  Google Scholar 

  • Lenschow D.H., Mann J., and Kristensen L. (1994). ‘How Long is Long Enough When Measuring Fluxes and Other Turbulence Statistics’. J. Atmos. Oceanic Technol 11:661–673

    Article  Google Scholar 

  • Linné, H., Hennemuth, B., Bösenberg, J., and Ertel, K.: 2006, ‘Water Vapour Flux Profiles in the Convective Boundary Layer’, Theor. Appl. Climatol., in press

  • Lumley, L., and Panofsky, H.: 1964. The Structure of Atmospheric Turbulence, John Wiley & Sons. 239 pp

  • Mahrt L., and Ek M. (1993). ‘Spatial Variability of Turbulent Fluxes and Roughness Lengths in HAPEX-MOBILHY’. Boundary-Layer Meteorol 65:381–400

    Google Scholar 

  • Mahrt L., Vickers D., Sun J., and McCaughey J.H. (2001). ‘Calculation of Area-Averaged Fluxes: Application to BOREAS’. J. Appl. Meteorol 40:915–920

    Article  Google Scholar 

  • Mann J., and Lenschow D.H. (1994). ‘Errors in Airborne Flux Measurements’. J. Geophys. Res D 99:14519–14526

    Article  Google Scholar 

  • Muschinski A., and Wode C. (1998). ‘First In-Situ Evidence for Co-Existing Sub-Meter Temperature and Humidity Sheets in the Lower Free Troposphere’. J. Atmos. Sci 55:2893–2906

    Article  Google Scholar 

  • Piacsek S.A., and Williams G.P. (1970). ‘Conservation Properties of Convection Difference Schemes’. J. Comput. Phys 6:392–405

    Article  Google Scholar 

  • Powell D., and Eldekin C. (1974). ‘An Investigation of the Application of Taylor’s Hypothesis to Atmospheric Boundary Layer Turbulence’. J. Atmos. Sci 31:990–1002

    Article  Google Scholar 

  • Raasch S., and Harbusch G. (2001). ‘An Analysis of Secondary Circulations and their Effects Caused by Small-Scale Surface Inhomogeneities Using Large-Eddy Simulation’. Boundary-Layer Meteorol 101:31–59

    Article  Google Scholar 

  • Raasch S., and Schröter M. (2001). ‘PALM – A Large-Eddy Simulation Model Performing on Massively Parallel Computers’. Meteorol. Z 10:363–372

    Article  Google Scholar 

  • Roth R., Hofmann M., and Wode C. (1999). ‘Geostrophic Wind, Gradient Wind, Thermal Wind, and the Vertical Windprofile – an Exemplary Analysis within a Planetary Boundary Layer over Arctic Sea-Ice’. Boundary-Layer Meteorol 92:327–339

    Article  Google Scholar 

  • Scherf A., and Roth R. (1997). ‘Estimates of Area-Averaged Turbulent Energy Fluxes in a Convectively Driven Boundary Layer Using Aircraft Measurements’. Phys. Chem. Earth 21:399–403

    Article  Google Scholar 

  • Schröter M., Bange J., and Raasch S. (2000). ‘Simulated Airborne Flux Measurements in a LES Generated Convective Boundary Layer’. Boundary-Layer Meteorol 95:437–456

    Article  Google Scholar 

  • Spieß, T., Zittel, P., and Bange, J.: 2004, ‘The Role of the Helicopter-Borne Turbulence Probe Helipod in Joint Field Campaigns’, in AMS: Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface. Seattle, USA, P 7.6, 6 pp

  • Tarantola A. (1987). Inverse Problem Theory. Elsevier, Amsterdam, 613 pp

    Google Scholar 

  • Taylor G. (1938). ‘The Spectrum of Turbulence’. Proc. Roy. Soc A 165:476–484

    Google Scholar 

  • Wolff M., and Bange J. (2000). ‘Inverse Method as an Analysing Tool for Airborne Measurements’. Meteorol. Z., N. F 9:361–376

    Google Scholar 

  • Zittel, P., Spieß, T., and Bange, J.: 2004, ‘The Calculation of the Statistical Error of Measured Turbulent Fluxes – Considerations and Improvement’, in AMS: 17th Conference on Probability and Statistics in the Atmospheric Sciences. Seattle, USA, 6.7, 5 pp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Bange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bange, J., Zittel, P., Spieß, T. et al. A New Method for the Determination of Area-Averaged Turbulent Surface Fluxes from Low-Level Flights Using Inverse Models. Boundary-Layer Meteorol 119, 527–561 (2006). https://doi.org/10.1007/s10546-005-9040-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-9040-6

Keywords

Navigation