Skip to main content
Log in

Internal Boundary Layers: I. Height Formulae for Neutral and Diabatic Flows

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The notion of an internal boundary layer (IBL) appeared in studies of local advection within the atmospheric boundary layer when air flows over a change in surface conditions. These include surface roughness, thermal and moisture properties. An ability to predict the height of the IBL interface in the atmosphere under neutral stability, accompanied by certain assumptions on the form of the mean flow parameters, have been a means of obtaining information on the velocity profile after step changes in roughness for more than half a century. A compendium of IBL formulae is presented. The approach based on the ‘diffusion analogy’ of Miyake receives close attention. The empirical expression of Savelyev and Taylor (2001, Boundary Layer Meteorol. 101, 293–301) suggested that turbulent diffusion is not the only factor that influences IBL growth. An argument is offered that an additional element, mean vertical velocity or streamline displacement, should be taken into account. Vertical velocity is parameterized in terms of horizontal velocity differences employing continuity constraints and scaling. Published data are analyzed from a new point of view, which produces two new neutral stratification formulae. The first implies that the roughness lengths of adjacent surfaces are equally important and a combined length scale can be constructed. In addition new formulae to predict the height of the region of diabatic flow affected by a step change in surface conditions are obtained as an extension of the neutral flow case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Andreopoulos D. H. Wood (1982) ArticleTitle‘The Response of a Turbulent Boundary Layer to a Short Length of Surface Roughness’ J. Fluid Mech 118 383–392

    Google Scholar 

  • R. J. Barthelmie J. P. Palutikof (1996) ArticleTitle‘Coastal Wind Speed Modelling for Wind Energy Applications’ J. Wind Eng. Ind. Aerodyn 62 213–236

    Google Scholar 

  • H. Bergström P.-E. Johansson A.-S. Smedman (1988) ArticleTitle‘A Study of Wind Speed Modification and Internal Boundary-Layer Heights in a Coastal Region’ Boundary-Layer Meteorol 42 313–335

    Google Scholar 

  • W. Brutsaert (1982) Evaporation into the Atmosphere D. Reidel Dordrecht 299

    Google Scholar 

  • F. Castino M. Tombrou (1998) ArticleTitle‘Parameterization of Convective and Stable Internal Boundary Layers into Mass Consistent Models’ J. Wind Eng. Ind. Aerodyn 74–76 239–247

    Google Scholar 

  • H. Cheng I. P. Castro (2002) ArticleTitle‘Near-Wall Flow Development after a Step Change in Surface Roughness’ Boundary-Layer Meteorol 105 411–432

    Google Scholar 

  • N. J. Cook (1997) ArticleTitle‘The Deaves and Harris ABL Model Applied to Heterogeneous Terrain’ J. Wind Eng. Ind. Aerodyn 66 197–214

    Google Scholar 

  • D. M. Deaves (1981) ArticleTitle‘Computation of Wind Flow over Changes in Surface Roughness’ J. Wind Eng. Ind. Aerodyn 7 65–94

    Google Scholar 

  • W. T. Echols N. K. Wagner (1972) ArticleTitle‘Surface Roughness and Internal Boundary Layer near a Coastline’ J. Appl. Meteorol 11 658–662

    Google Scholar 

  • W. P. Elliott (1958) ArticleTitle‘The Growth of the Atmospheric Internal Boundary Layer’ Trans. Amer. Geophys. Union 39 1048–1054

    Google Scholar 

  • J. R. Garratt (1990) ArticleTitle‘The Internal Boundary Layer–A Review’ Boundary-Layer Meteorol 50 171–203 Occurrence Handle10.1007/BF00120524

    Article  Google Scholar 

  • J. R. Garratt (1992) The Atmospheric Boundary Layer Cambridge University Press U.K.

    Google Scholar 

  • N. A. Jackson (1976) ArticleTitle‘The Propagation of Modified Flow Downstream of a Change in Roughness’ Quart. J. Roy. Meteorol. Soc 102 924–933

    Google Scholar 

  • O. O. Jegede Th. Foken (1999) ArticleTitle‘A Study of the Internal Boundary Layer Due to a Roughness Change in Neutral Conditions Observed during the LINEX Field Campains’ Theor. Appl. Climatol 62 31–41

    Google Scholar 

  • J. C. Kaimal J. J. Finnigan (1994) Atmospheric Boundary Layer Flows Oxford University Press U.K.

    Google Scholar 

  • B. Källstrand A. -S. Smedman (1997) ArticleTitle‘A Case Study of the Near-Neutral Coastal Internal Boundary-Layer Growth: Aircraft Measurements Compared with Different Model Estimates’ Boundary-Layer Meteorol 85 1–33

    Google Scholar 

  • E. Logan G. H. Fichtl (1975) ArticleTitle‘Rough-to-Smooth Transition of an Equilibrium Neutral Constant Stress Layer’ Boundary-Layer Meteorol 8 525–528

    Google Scholar 

  • D. Melas H. D. Kambezidis (1992) ArticleTitle‘The Depth of the Internal Boundary Layer over an Urban Area under Sea-Breeze Conditions’ Boundary-Layer Meteorol 61 247–274

    Google Scholar 

  • M. Miyake (1965) Transformation of the Atmospheric Boundary Layer over Inhomogeneous Surfaces Univ. of Washington Seattle, U.S.A

    Google Scholar 

  • A. S. Monin A. M. Obukhov (1954) ArticleTitle‘Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere’, Trudy Geofiz Inst. Acad. Nauk SSSR 24 IssueID151 163–187

    Google Scholar 

  • Y. Ogawa T. Ohara (1985) ArticleTitle‘The Turbulent Structure of the Internal Boundary Layer near the Shore. Part 1: Case Study’ Boundary-Layer Meteorol 31 369–384

    Google Scholar 

  • H. A. Panofsky (1973) ‘Tower Micrometeorology’ D. A. Haugen (Eds) Workshop on Micrometeorology American Meteorological Society Boston 151–176

    Google Scholar 

  • H. A. Panofsky J. A. Dutton (1984) Atmospheric Turbulence Wiley (Interscience) New York

    Google Scholar 

  • H. A. Panofsky A. A. Townsend (1964) ArticleTitle‘Change of Terrain Roughness and the Wind Profile’ Quart. J. Roy. Meteorol. Soc 90 147–155

    Google Scholar 

  • H. A. Panofsky H. Tennekes D. H. Lenschow J. C. Wyngaard (1977) ArticleTitle‘The Characteristics of Turbulent Velocity Components in the Surface Layer under Convective Conditions’ Boundary-Layer Meteorol 11 355–361

    Google Scholar 

  • C. A. Paulson (1970) ArticleTitle‘The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer’ J. Appl. Meteorol 9 857–861

    Google Scholar 

  • W. Pendergrass S. P. S. Aria (1984) ArticleTitle‘Dispersion in Neutral Boundary Layer over a Step Change in Surface Roughness–I. Mean Flow and Turbulence Structure’ Atmos. Environ 18 1267–1279

    Google Scholar 

  • E. W. Peterson N. O. Jensen J. Hojstrup (1979) ArticleTitle‘Observations of Downwind Development of Wind Speed and Variance Profiles at Bognaes and Comparison with Theory’ Quart. J. Roy. Meteorol. Soc 105 521–529

    Google Scholar 

  • A. Raabe (1983) ArticleTitle‘On the Relation between the Drag Coefficient and Fetch above the Sea in the Case of Off-Shore Wind in the Near Shore Zone’ Z. Meteorol 33 363–367

    Google Scholar 

  • A. Raabe (1991) ArticleTitle‘Die Höhe der internen Grenzschicht’ Z. Meteorol 41 251–261

    Google Scholar 

  • V. M. Radikevitsch (1971) ArticleTitle‘Transformazija Dinamitscheskikh Characteristik Vozdushnogo Potoka pod Vlijaniem Izmenenija Scherochovatosti Podstila justschej Poverchnosti’, Izvestia AN SSSR Fizika Atmosphery i Okeana 7 1241–1250

    Google Scholar 

  • S. A. Savelyev (2003) A Model of the Internal Boundary Layer for Neutral and Diabatic Flow Situations York University Toronto

    Google Scholar 

  • S. A. Savelyev P. A. Taylor (2001) ArticleTitle‘Notes on Internal Boundary-Layer Height Formula’ Boundary-Layer Meteorol 101 293–301

    Google Scholar 

  • W. H. Schofield (1975) ArticleTitle‘Measurements in Adverse-Pressure-Gradient Turbulent Boundary Layers with a Step Change in Surface Roughness’ J. Fluid Mech 70 573–593

    Google Scholar 

  • C. C. Shir (1972) ArticleTitle‘A Numerical Computation of Air Flow over a Sudden Change of Surface Roughness’ J. Atmos. Sci 29 304–310

    Google Scholar 

  • Shuleikin, V. V.: 1953, Molecular Physics of the Sea, Trans. by US Navy Hydrographic Office, (1957), 365 pp.

  • P. A. Taylor (1969) ArticleTitle‘The Planetary Boundary Layer above a Change in Surface Roughness’ J. Atmos. Sci 26 432–440

    Google Scholar 

  • A. A. Townsend (1965) ArticleTitle‘The Responce of a Turbulent Boundary Layer to Abrupt Changes in Surface Conditions’ J. Fluid Mech 22 799–822

    Google Scholar 

  • A. A. Townsend (1966) ArticleTitle‘The Flow in a Turbulent Boundary Layer after a Change in Surface Roughness’ J. Fluid Mech 26 255–266

    Google Scholar 

  • I. Troen N. G. Mortensen E. L. Petersen (1987) WASP: Wind Analisys and Application Program User’s Guide, Release 1.0 RisøNational Lab. Roskilde, Denmark

    Google Scholar 

  • J. L. Walmsley (1989) ArticleTitle‘Internal Boundary-Layer Height Formulae–A Comparison with Atmospheric Data’ Boundary-Layer Meteorol 47 251–262

    Google Scholar 

  • J. L. Walmsley P. A. Taylor J. R. Salmon (1989) ArticleTitle‘Simple Guidlines for Estimating Wind Speed Variations Due to Small-Scale Topographic Features–An Update’ Climatol. Bull 23 3–14

    Google Scholar 

  • WMO: 1981, Meteorological Aspects of the Utilization of Wind as an Energy Source, WMO, Technical Note, 175, 180 pp.

  • D. H. Wood (1982) ArticleTitle‘Internal Boundary-Layer Growth Following a Change in Surface Roughness’ Boundary-Layer Meteorol 22 241–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy A. Savelyev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savelyev, S.A., Taylor, P.A. Internal Boundary Layers: I. Height Formulae for Neutral and Diabatic Flows. Boundary-Layer Meteorol 115, 1–25 (2005). https://doi.org/10.1007/s10546-004-2122-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-2122-z

Keywords

Navigation