Skip to main content
Log in

Muscle fiber-type distribution, fiber-type-specific damage, and the Pompe disease phenotype

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Pompe disease is a lysosomal storage disorder caused by acid α-glucosidase deficiency and characterized by progressive muscle weakness. Enzyme replacement therapy (ERT) has ameliorated patients’ perspectives, but reversal of skeletal muscle pathology remains a challenge. We studied pretreatment biopsies of 22 patients with different phenotypes to investigate to what extent fiber-type distribution and fiber-type-specific damage contribute to clinical diversity. Pompe patients have the same fiber-type distribution as healthy persons, but among nonclassic patients with the same GAA mutation (c.-32-13T>G), those with early onset of symptoms tend to have more type 2 muscle fibers than those with late-onset disease. Further, it seemed that the older, more severely affected classic infantile patients and the wheelchair-bound and ventilated nonclassic patients had a greater proportion of type 2x muscle fibers. However, as in other diseases, this may be caused by physical inactivity of those patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bell RD, MacDougall JD, Billeter R, Howald H (1980) Muscle fiber types and morphometric analysis of skeletal msucle in six-year-old children. Med Sci Sports Exerc 12:28–31

    Article  CAS  PubMed  Google Scholar 

  • Drost MR, Schaart G, van Dijk P et al (2008) Both type 1 and type 2a muscle fibers can respond to enzyme therapy in Pompe disease. Muscle Nerve 37:251–255

    Article  PubMed  Google Scholar 

  • Fukuda T, Roberts A, Ahearn M, Zaal K, Ralston E, Plotz PH, Raben N (2006) Autophagy and lysosomes in Pompe disease. Autophagy 2:318–320

    Article  CAS  PubMed  Google Scholar 

  • Giesker D, Bowers GN Jr (1979) The comparative utility of serum creatine kinase versus serum aldolase in the evaluation of muscle disorders. Conn Med 43:699–704

    CAS  PubMed  Google Scholar 

  • Gojo K, Abe S, Ide Y (2002) Characteristics of myofibres in the masseter muscle of mice during postnatal growth period. Anat Histol Embryol 31:105–112

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL (1984) Infantile acid maltase deficiency. I. Muscle fiber destruction after lysosomal rupture. Virchows Arch B Cell Pathol Incl Mol Pathol 45:23–36

    Article  CAS  PubMed  Google Scholar 

  • Grimby G, Aniansson A, Zetterberg C, Saltin B (1984) Is there a change in relative muscle fibre composition with age? Clin Physiol 4:189–194

    Article  CAS  PubMed  Google Scholar 

  • Hesselink RP, Wagenmakers AJ, Drost MR, Van der Vusse GJ (2003) Lysosomal dysfunction in muscle with special reference to glycogen storage disease type II. Biochim Biophys Acta 1637:164–170

    Article  CAS  PubMed  Google Scholar 

  • Hirschorn R, Reuser A (2001) Glycogen storage disease type II: acid alpha-glucosidase (Acid Maltase) deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle MD (eds) The metabolic and molecular bases of inherited disease. Mc Graw-Hill, pp 3389–3420

  • Kishnani PS, Corzo D, Leslie ND et al (2009) Early treatment with alglucosidase alpha prolongs long-term survival of infants with Pompe disease. Pediatr Res 66:329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishnani PS, Corzo D, Nicolino M et al (2007) Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology 68:99–109

    Article  CAS  PubMed  Google Scholar 

  • Kishnani PS, Hwu WL, Mandel H, Nicolino M, Yong F, Corzo D, Infantile-Onset Pompe Disease Natural History Study Group (2006) A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr 148:671–676

    Article  PubMed  Google Scholar 

  • Kriketos AD, Baur LA, O’Connor J, Carey D, King S, Caterson ID, Storlien LH (1997) Muscle fibre type composition in infant and adult populations and relationships with obesity. Int J Obes Relat Metab Disord 21:796–801

    Article  CAS  PubMed  Google Scholar 

  • Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD (1989) The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 46:1121–1123

    Article  CAS  PubMed  Google Scholar 

  • Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50 Spec No: 11–16

    PubMed  Google Scholar 

  • Lexell J, Taylor CC, Sjostrom M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84:275–294

    Article  CAS  PubMed  Google Scholar 

  • Muller-Felber W, Horvath R, Gempel K et al (2007) Late onset Pompe disease: clinical and neurophysiological spectrum of 38 patients including long-term follow-up in 18 patients. Neuromuscul Disord 17:698–706

    Article  PubMed  Google Scholar 

  • Raben N, Danon M, Gilbert AL et al (2003) Enzyme replacement therapy in the mouse model of Pompe disease. Mol Genet Metab 80:159–169

    Article  CAS  PubMed  Google Scholar 

  • Raben N, Fukuda T, Gilbert AL et al (2005) Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers. Mol Ther 11:48–56

    Article  CAS  PubMed  Google Scholar 

  • Raben N, Ralston E, Chien YH et al (2010) Differences in the predominance of lysosomal and autophagic pathologies between infants and adults with Pompe disease: implications for therapy. Mol Genet Metab 101:324–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scelsi R, Marchetti C, Poggi P (1980) Histochemical and ultrastructural aspects of m. vastus lateralis in sedentary old people (age 65–89 years). Acta Neuropathol 51:99–105

    Article  CAS  PubMed  Google Scholar 

  • Schoser B, Hill V, Raben N (2008) Therapeutic approaches in glycogen storage disease type II/Pompe Disease. Neurotherapeutics 5:569–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoser BG, Muller-Hocker J, Horvath R, Gempel K, Pongratz D, Lochmuller H, Muller-Felber W (2007) Adult-onset glycogen storage disease type 2: clinico-pathological phenotype revisited. Neuropathol Appl Neurobiol 33:544–559

    CAS  PubMed  Google Scholar 

  • Shea L, Raben N (2009) Autophagy in skeletal muscle: implications for Pompe disease. Int J Clin Pharmacol Ther 47(Suppl 1):S42–S47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Straub V (2008) Diagnosis. In: Baethmann M, Straub V, Reuser AJJ (eds) Pompe disease. Bremen, UNI-MED, pp 51–54

    Google Scholar 

  • Strothotte S, Strigl-Pill N, Grunert B et al (2010) Enzyme replacement therapy with alglucosidase alfa in 44 patients with late-onset glycogen storage disease type 2: 12-month results of an observational clinical trial. J Neurol 257:91–97

    Article  CAS  PubMed  Google Scholar 

  • Thurberg BL, Lynch Maloney C, Vaccaro C et al (2006) Characterization of pre- and post-treatment pathology after enzyme replacement therapy for Pompe disease. Lab Invest 86:1208–1220

    Article  CAS  PubMed  Google Scholar 

  • Turner DC, Eppenberger HM (1973) Developmental changes in creatine kinase and aldolase isoenzymes and their possible function in association with contractile elements. Enzyme 15:224–238

    CAS  PubMed  Google Scholar 

  • van Capelle CI, Winkel LP, Hagemans ML et al (2008) Eight years experience with enzyme replacement therapy in two children and one adult with Pompe disease. Neuromuscul Disord 18:447–452

    Article  PubMed  Google Scholar 

  • van den Berg LE, de Vries JM, Verdijk RM, van der Ploeg AT, Reuser AJ, van Doorn PA (2011) A case of adult Pompe disease presenting with severe fatigue and selective involvement of type 1 muscle fibers. Neuromuscul Disord 21:232–234

    Article  PubMed  Google Scholar 

  • van den Hout HM, Hop W, van Diggelen OP et al (2003) The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics 112:332–340

    Article  PubMed  Google Scholar 

  • Van den Hout JM, Kamphoven JH, Winkel LP et al (2004) Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics 113:e448–e457

    Article  PubMed  Google Scholar 

  • van der Ploeg AT, Clemens PR, Corzo D et al (2010) A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med 362:1396–1406

    Article  PubMed  Google Scholar 

  • Winkel LP, Hagemans ML, van Doorn PA, Loonen MC, Hop WJ, Reuser AJ, van der Ploeg AT (2005) The natural course of non-classic Pompe’s disease; a review of 225 published cases. J Neurol 252:875–884

    Article  PubMed  Google Scholar 

  • Winkel LP, Kamphoven JH, van den Hout HJ, Severijnen LA, van Doorn PA, Reuser AJ, van der Ploeg AT (2003) Morphological changes in muscle tissue of patients with infantile Pompe’s disease receiving enzyme replacement therapy. Muscle Nerve 27:743–751

    Article  CAS  PubMed  Google Scholar 

  • Wokke JH, Escolar DM, Pestronk A et al (2008) Clinical features of late-onset Pompe disease: a prospective cohort study. Muscle Nerve 38:1236–1245

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank patients and parents for participating in the study; and J. Hardon, H. Nelisse, and T. Oskam for their contribution to the study as research nurses.

The research on Pompe disease at Erasmus MC was financially supported by the Erasmus MC Revolving Fund (NAMEvdB, project no 1054), ZonMw-Dutch organization for healthcare research and innovation of care [Grant 152001005], The ‘Prinses Beatrix Fonds’ (project number OP07-08) and the European Union, 7th Framework Program “EUCLYD-a European Consortium for Lysosomal Storage Diseases” of the European Union (health F2/2008 grant agreement 201678).

Competing interest

As of August 2004, ATvdP and AJR provide consulting services for Genzyme Corp, Cambridge, MA, USA, under an agreement between Genzyme Corp and Erasmus MC, Rotterdam, the Netherlands. This agreement also caters to financial support for Erasmus MC for research in Pompe disease. Erasmus MC and inventors for the method of treatment of Pompe’s disease by ERT receive royalty payments pursuant to Erasmus MC policy on inventions, patents and technology transfer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. J. Reuser.

Additional information

Communicated by: Ed Wraith

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

The percentage of a types 1 and 2 muscle fibers, and b percentage of type 2a and type 2x muscle fibers in classic infantile patients and nonclassic patients. Significance between the different groups of patients is shown by * (P < 0.05). (JPEG 22 kb)

High resolution image. (TIFF 830 kb)

Supplementary Table 1

Patient characteristics (DOC 61 kb)

Supplementary Table 2

Degree of vacuolation per muscle-fiber type (percentage of fibers) (DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berg, L.E.M., Drost, M.R., Schaart, G. et al. Muscle fiber-type distribution, fiber-type-specific damage, and the Pompe disease phenotype. J Inherit Metab Dis 36, 787–794 (2013). https://doi.org/10.1007/s10545-012-9541-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-012-9541-7

Keywords

Navigation