Skip to main content
Log in

Neonatal onset of mitochondrial disorders in 129 patients: clinical and laboratory characteristics and a new approach to diagnosis

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Introduction

Mitochondrial disorders (MD) may manifest in neonates, but early diagnosis is difficult. In this study, clinical and laboratory data were analyzed in 129 patients with neonatal onset of MD to identify any association between specific mitochondrial diseases and their symptoms with the aim of optimizing diagnosis.

Materials and methods

Retrospective clinical and laboratory data were evaluated in 461 patients (331 families) with confirmed MD.

Results

The neonatal onset of MD was reported in 28% of the patients. Prematurity, intrauterine growth retardation and hypotonia necessitating ventilatory support were present in one-third, cardiomyopathy in 40%, neonatal seizures in 16%, Leigh syndrome in 15%, and elevated lactate level in 87%. Hyperammonemia was observed in 22 out of 52 neonates. Complex I deficiency was identified in 15, complex III in one, complex IV in 23, complex V in 31, combined deficiency of several complexes in 53, and PDH complex deficiency was identified in six patients. Molecular diagnosis was confirmed in 49 cases, including a newborn with a 9134A>G mutation in the MTATP6 gene, which has not been described previously.

Conclusion

The most significant finding is the high incidence of neonatal cardiomyopathy and hyperammonemia. Based on our experience, we propose a diagnostic flowchart applicable to critically ill neonates suspicious for MD. This tool will allow for the use of direct molecular genetic analyses without the need for muscle biopsies in neonates with Alpers, Barth, MILS and Pearson syndromes, SCO1, SCO2, TMEM70, ATP5E, SUCLG1 gene mutations and PDH complex deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ATP5E:

Epsilon subunit of F1FO-ATP synthase

BCAA:

Branched-chain amino acids

CMP:

Cardiomyopathy

IEM:

Inborn errors of metabolism

IUGR:

Intrauterine growth retardation

LHON:

Leber hereditary optic neuropathy

L/P:

Lactate/pyruvate ratio

MD:

Mitochondrial disorders

MELAS:

Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes

MERRF:

Myoclonic epilepsy with ragged-red fibers

MILS:

Maternally inherited Leigh syndrome

MMA:

Methylmalonic acid

MNGIE:

Mitochondrial neuro-gastrointestinal encephalomyopathy

MTATP6:

Mitochondrially encoded ATP synthase 6 subunit

mtDNA:

Mitochondrial DNA

MTND1:

Mitochondrially encoded NADH dehydrogenase (complex I) 1 subunit

nDNA:

Nuclear DNA

NARP:

Neuropathy, ataxia and retinitis pigmentosa

NDUFA1, NDUFS1, NDUFS4, NDUFS6:

Complex I subunits

NDUFAF2:

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 2

OXPHOS:

Oxidative phosphorylation system

PDHc:

Pyruvate dehydrogenase complex

POLG:

Polymerase gamma

SCO1:

Synthesis of cytochrome c oxidase 1, cytochrome c oxidase assembly protein

SCO2:

Synthesis of cytochrome c oxidase 2, cytochrome c oxidase assembly protein

SDH:

Succinate dehydrogenase

SUCLA2:

Succinate-CoA ligase, ADP-forming, beta subunit

SUCLG1:

Succinate-CoA ligase, alpha subunit

SURF1:

Surfeit 1, cytochrome c oxidase assembly protein

TMEM70:

Transmembrane protein 70, F1FO-ATP synthase biogenesis

3-MGA:

3-methylglutaconic acid

References

  • Antonicka H, Leary SC, Guercin GH et al. (2003a) Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum Mol Genet 12:2693–2702

    Article  CAS  PubMed  Google Scholar 

  • Antonicka H, Mattman A, Carlson CG et al. (2003b) Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am J Hum Genet 72:101–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Azevedo LC (2010) Mitochondrial dysfunction during sepsis. Endocrinol Metab Immune Disord Drug Targets 10:214–223

    Article  CAS  Google Scholar 

  • Barnerias C, Saudubray JM, Touati G et al. (2010) Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol 52:e1–e9

    Article  PubMed  Google Scholar 

  • Barth PG, Valianpour F, Bowen VM et al. (2004) X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. Am J Med Genet A 126A:349–354

    Article  PubMed  Google Scholar 

  • Bernier FP, Boneh A, Dennett X et al. (2002) Diagnostic criteria for respiratory chain disorders in adults and children. Neurology 59:1406–1411

    Article  CAS  PubMed  Google Scholar 

  • Bohm M, Pronicka E, Karczmarewicz E et al. (2006) Retrospective, multicentric study of 180 children with cytochrome C oxidase deficiency. Pediatr Res 59:21–26

    Article  PubMed  Google Scholar 

  • Cameron JM, Levandovskiy V, Mackay N et al. (2011) Complex V TMEM70 deficiency results in mitochondrial nucleoid disorganization. Mitochondrion 11:191–199

    Article  CAS  PubMed  Google Scholar 

  • Capkova M, Hansikova H, Godinot C et al. (2002) A new missense mutation of 574 C > T in the SURF1 gene–biochemical and molecular genetic study in seven children with Leigh syndrome. Cas Lek Cesk 141:636–641

    CAS  PubMed  Google Scholar 

  • Cerna L, Wenchich L, Hansikova H et al. (2001) Novel mutations in a boy with dihydrolipoamide dehydrogenase deficiency. Med Sci Monit 7:1319–1325

    CAS  PubMed  Google Scholar 

  • Constantin-Teodosiu D, Cederblad G, Hultman E (1991) A sensitive radioisotopic assay of pyruvate dehydrogenase complex in human muscle tissue. Anal Biochem 198:347–351

    Article  CAS  PubMed  Google Scholar 

  • Debray FG, Lambert M, Chevalier I et al. (2007) Long-term outcome and clinical spectrum of 73 pediatric patients with mitochondrial diseases. Pediatrics 119:722–733

    Article  PubMed  Google Scholar 

  • Donati MA, Malvagia S, Pasquini E et al. (2006) Barth syndrome presenting with acute metabolic decompensation in the neonatal period. J Inherit Metab Dis 29:684

    Article  PubMed  Google Scholar 

  • Fragaki K, Procaccio V, Bannwarth S et al. (2009) A neonatal polyvisceral failure linked to a de novo homoplasmic mutation in the mitochondrially encoded cytochrome b gene. Mitochondrion 9:346–352

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Cazorla A, De Lonlay P, Nassogne MC et al. (2005) Long-term follow-up of neonatal mitochondrial cytopathies: a study of 57 patients. Pediatrics 116:1170–1177

    Article  CAS  PubMed  Google Scholar 

  • Gibson K, Halliday JL, Kirby DM et al. (2008) Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses. Pediatrics 122:1003–1008

    Article  PubMed  Google Scholar 

  • Honzik T, Tesarova M, Mayr JA et al. (2010) Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Arch Dis Child 95:296–301

    Article  PubMed  Google Scholar 

  • Honzik T, Wenchich L, Bohm M et al. (2008) Activities of respiratory chain complexes and pyruvate dehydrogenase in isolated muscle mitochondria in premature neonates. Early Hum Dev 84:269–276

    Article  CAS  PubMed  Google Scholar 

  • Janssen AJ, Trijbels FJ, Sengers RC et al. (2006) Measurement of the energy-generating capacity of human muscle mitochondria: diagnostic procedure and application to human pathology. Clin Chem 52:860–871

    Article  CAS  PubMed  Google Scholar 

  • Klement P, Nijtmans LG, Van den Bogert C et al. (1995) Analysis of oxidative phosphorylation complexes in cultured human fibroblasts and amniocytes by blue-native-electrophoresis using mitoplasts isolated with the help of digitonin. Anal Biochem 231:218–224

    Article  CAS  PubMed  Google Scholar 

  • Leshinsky-Silver E, Lev D, Tzofi-Berman Z et al. (2005) Fulminant neurological deterioration in a neonate with Leigh syndrome due to a maternally transmitted missense mutation in the mitochondrial ND3 gene. Biochem Biophys Res Commun 334:582–587

    Article  CAS  PubMed  Google Scholar 

  • Lui K, Abdel-Latif ME, Allgood CL et al. (2006) Improved outcomes of extremely premature outborn infants: effects of strategic changes in perinatal and retrieval services. Pediatrics 118:2076–2083

    Article  PubMed  Google Scholar 

  • Magner M, Szentivanyi K, Svandova I et al. (2011) Elevated CSF-lactate is a reliable marker of mitochondrial disorders in children even after brief seizures. Eur J Paediatr Neurol 15:101–108

    Article  PubMed  Google Scholar 

  • Mayr JA, Havlickova V, Zimmermann F et al. (2010) Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Hum Mol Genet 19:3430–3439

    Article  CAS  PubMed  Google Scholar 

  • Mayr JA, Paul J, Pecina P et al. (2004) Reduced respiratory control with ADP and changed pattern of respiratory chain enzymes as a result of selective deficiency of the mitochondrial ATP synthase. Pediatr Res 55:988–994

    Article  CAS  PubMed  Google Scholar 

  • Morava E, van den Heuvel L, Hol F et al. (2006) Mitochondrial disease criteria: diagnostic applications in children. Neurology 67:1823–1826

    Article  CAS  PubMed  Google Scholar 

  • Morel AS, Joris N, Meuli R et al. (2009) Early neurological impairment and severe anemia in a newborn with Pearson syndrome. Eur J Pediatr 168:311–315

    Article  PubMed  Google Scholar 

  • Moslemi AR, Darin N, Tulinius M et al. (2008) Progressive encephalopathy and complex I deficiency associated with mutations in MTND1. Neuropediatrics 39:24–28

    Article  CAS  PubMed  Google Scholar 

  • Munnich A, Rustin P (2001) Clinical spectrum and diagnosis of mitochondrial disorders. Am J Med Genet 106:4–17

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard E, Christensen E, Kristensen E et al. (2007) Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am J Hum Genet 81:383–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pejznochova M, Tesarova M, Hansikova H et al. (2010) Mitochondrial DNA content and expression of genes involved in mtDNA transcription, regulation and maintenance during human fetal development. Mitochondrion 10:321–329

    Article  CAS  PubMed  Google Scholar 

  • Rouzier C, Le Guedard-Mereuze S, Fragaki K et al. (2010) The severity of phenotype linked to SUCLG1 mutations could be correlated with residual amount of SUCLG1 protein. J Med Genet 47:670–676

    Article  CAS  PubMed  Google Scholar 

  • Rustin P, Chretien D, Bourgeron T et al. (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  CAS  PubMed  Google Scholar 

  • Saada A, Vogel RO, Hoefs SJ et al. (2009) Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. Am J Hum Genet 84:718–727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scaglia F, Towbin JA, Craigen WJ et al. (2004) Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 114:925–931

    Article  PubMed  Google Scholar 

  • Shchelochkov OA, Li FY, Wang J et al. (2010) Milder clinical course of Type IV 3-methylglutaconic aciduria due to a novel mutation in TMEM70. Mol Genet Metab 101:282–285

    Article  CAS  PubMed  Google Scholar 

  • Schagger H, Noack H, Halangk W et al. (1995) Cytochrome-c oxidase in developing rat heart. Enzymic properties and amino-terminal sequences suggest identity of the fetal heart and the adult liver isoform. Eur J Biochem 230:235–241

    Article  CAS  PubMed  Google Scholar 

  • Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  CAS  PubMed  Google Scholar 

  • Schiff M, Ogier de Baulny H, Lombes A (2011) Neonatal cardiomyopathies and metabolic crises due to oxidative phosphorylation defects. Semin Fetal Neonatal Med 16:216–221

    Article  PubMed  Google Scholar 

  • Skladal D, Sudmeier C, Konstantopoulou V et al. (2003) The clinical spectrum of mitochondrial disease in 75 pediatric patients. Clin Pediatr (Phila) 42:703–710

    Article  CAS  Google Scholar 

  • Smits P, Mattijssen S, Morava E et al. (2010) Functional consequences of mitochondrial tRNA Trp and tRNA Arg mutations causing combined OXPHOS defects. Eur J Hum Genet EJHG 18:324–329

    Article  CAS  PubMed  Google Scholar 

  • Soares-Fernandes JP, Teixeira-Gomes R, Cruz R et al. (2008) Neonatal pyruvate dehydrogenase deficiency due to a R302H mutation in the PDHA1 gene: MRI findings. Pediatr Radiol 38:559–562

    Article  PubMed  Google Scholar 

  • Sperl W, Sengers RC, Trijbels JM et al. (1992) Enzyme activities of the mitochondrial energy generating system in skeletal muscle tissue of preterm and fullterm neonates. Ann Clin Biochem 29(Pt 6):638–645

    Article  CAS  PubMed  Google Scholar 

  • Spiegel R, Khayat M, Shalev SA et al. (2011) TMEM70 mutations are a common cause of nuclear encoded ATP synthase assembly defect: further delineation of a new syndrome. J Med Genet 48:177–182

    Article  PubMed  Google Scholar 

  • Spinazzola A, Invernizzi F, Carrara F et al. (2009) Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis 32:143–158

    Article  CAS  PubMed  Google Scholar 

  • Stiburek L, Vesela K, Hansikova H et al. (2009) Loss of function of Sco1 and its interaction with cytochrome c oxidase. Am J Physiol Cell Physiol 296:C1218–C1226

    Article  CAS  PubMed  Google Scholar 

  • Strassburg HM, Koch J, Mayr J et al. (2006) Acute flaccid paralysis as initial symptom in 4 patients with novel E1alpha mutations of the pyruvate dehydrogenase complex. Neuropediatrics 37:137–141

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen A (2011) Biomarkers for mitochondrial respiratory chain disorders. J Inherit Metab Dis 34:277–282

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen A, Elo JM, Pietilainen KH et al. (2011) FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol 10:806–818

    Article  CAS  PubMed  Google Scholar 

  • Taylor GP (2004) Neonatal mitochondrial cardiomyopathy. Pediatr Dev Pathol 7:620–624

    Article  CAS  PubMed  Google Scholar 

  • Tesarova M, Hansikova H, Hlavata A et al. (2002) Variation in manifestations of heteroplasmic mtDNA mutation 8993 T > G in two families. Cas Lek Cesk 141:551–554

    CAS  PubMed  Google Scholar 

  • Tzoulis C, Engelsen BA, Telstad W et al. (2006) The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain 129:1685–1692

    Article  PubMed  Google Scholar 

  • Valnot I, Osmond S, Gigarel N et al. (2000) Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 67:1104–1109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vary TC, Hazen S (1999) Sepsis alters pyruvate dehydrogenase kinase activity in skeletal muscle. Mol Cell Biochem 198:113–118

    Article  CAS  PubMed  Google Scholar 

  • Verdijk RM, de Krijger R, Schoonderwoerd K et al. (2008) Phenotypic consequences of a novel SCO2 gene mutation. Am J Med Genet A 146A:2822–2827

    Article  CAS  PubMed  Google Scholar 

  • Vesela K, Hansikova H, Tesarova M et al. (2004) Clinical, biochemical and molecular analyses of six patients with isolated cytochrome c oxidase deficiency due to mutations in the SCO2 gene. Acta Paediatr 93:1312–1317

    Article  CAS  PubMed  Google Scholar 

  • von Kleist-Retzow JC, Cormier-Daire V, Viot G et al. (2003) Antenatal manifestations of mitochondrial respiratory chain deficiency. J Pediatr 143:208–212

    Article  Google Scholar 

  • Wexler ID, Hemalatha SG, McConnell J et al. (1997) Outcome of pyruvate dehydrogenase deficiency treated with ketogenic diets. Studies in patients with identical mutations. Neurology 49:1655–1661

    Article  CAS  PubMed  Google Scholar 

  • Wolf NI, Smeitink JA (2002) Mitochondrial disorders: a proposal for consensus diagnostic criteria in infants and children. Neurology 59:1402–1405

    Article  PubMed  Google Scholar 

  • Wong LJ, Scaglia F, Graham BH et al. (2010) Current molecular diagnostic algorithm for mitochondrial disorders. Mol Genet Metab 100:111–117

    Article  CAS  PubMed  Google Scholar 

  • Wortmann SB, Rodenburg RJ, Backx AP et al. (2007) Early cardiac involvement in children carrying the A3243G mtDNA mutation. Acta Paediatr 96:450–451

    Article  CAS  PubMed  Google Scholar 

  • Yen TY, Hwu WL, Chien YH et al. (2008) Acute metabolic decompensation and sudden death in Barth syndrome: report of a family and a literature review. Eur J Pediatr 167:941–944

    Article  PubMed  Google Scholar 

  • Zand DJ, Simon EM, Pulitzer SB et al. (2003) In vivo pyruvate detected by MR spectroscopy in neonatal pyruvate dehydrogenase deficiency. AJNR Am J Neuroradiol 24:1471–1474

    PubMed  Google Scholar 

Download references

Acknowlegements

The study was supported by grants from the Ministry of Health of the Czech Republic IGA MZ NS 10561-3/2009 (TH, KS), IGA MZ NS 9782-4/2008 (PJ, MM), IGA MZ NT 11186-5/2010 (MT, HH), by Center of Applied Genomics 1 M520 (JZ, KV, LW) from the Ministry of Education, Youth and Sports of the Czech Republic, and by the Vereinigung zur Forschung und Fortbildung, Univ. Kinderklinik Salzburg, Austria (WS, JM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Zeman.

Additional information

Communicated by: Eva Morava

Competing interest: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honzik, T., Tesarova, M., Magner, M. et al. Neonatal onset of mitochondrial disorders in 129 patients: clinical and laboratory characteristics and a new approach to diagnosis. J Inherit Metab Dis 35, 749–759 (2012). https://doi.org/10.1007/s10545-011-9440-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9440-3

Keywords

Navigation