Skip to main content
Log in

Decreased serum antioxidant capacity in patients with Wilson disease is associated with neurological symptoms

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Background & Aims

Wilson disease (WD) is an inherited disorder of copper disposition caused by an ATP7B transporter gene mutation, leading to copper accumulation in predisposed tissues. In addition to a genetic predisposition, other factors are likely to contribute to its clinical manifestation. The aim of the study was to assess whether oxidative stress affects the phenotypic manifestation of WD.

Methods

In 56 patients with WD (29 men; 26 with the hepatic form, 22 with the neurologic form, and eight asymptomatic; mean age 38.5 ± 12 years), total serum antioxidant capacity (TAC) and inflammatory parameters (hs-CRP, IL-1β, IL-2, IL-6, IL-10, and TNF-α) were analyzed and related to the clinical manifestation, and mutations of the ATP7B gene. The control group for the TAC and inflammatory parameters consisted of 50 age- and gender-matched healthy individuals.

Results

WD patients had a significantly lower TAC (p < 0.00001), lower IL-10 levels (p = 0.039), as well as both higher IL-1β (p = 0.019) and IL-6 (p = 0.005) levels compared to the control subjects. TNF-α, hs-CRP, and IL-2 did not differ from the controls. Patients with the neurological form of WD had a significantly lower TAC than those with the hepatic form (p < 0.001). In addition, the lower TAC was associated with the severity of the neurological symptoms (p = 0.02). No relationship between the inflammatory parameters and clinical symptoms was found.

Conclusions

Data from our study suggest that the increased oxidative stress contributes significantly to the clinical manifestation of WD; as a lower TAC is associated with the neurological symptoms in WD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346:1221–1231

    Article  PubMed  CAS  Google Scholar 

  • Borjigin J, Payne AS, Deng J et al. (1999) A novel pineal night-specific ATPase encoded by the Wilson disease gene. J Neurosci 19:1018–1026

    PubMed  CAS  Google Scholar 

  • Britton RS (1996) Metal-induced hepatotoxicity. Semin Liver Dis 16:3–12

    Article  PubMed  CAS  Google Scholar 

  • Bruha R, Marecek Z, Pospisilova L et al. (2011) Long-term follow-up of Wilson Disease: natural history, treatment, mutations analysis and phenotypic correlation. Liver Int 31:83–91

    Article  PubMed  CAS  Google Scholar 

  • Bull AI, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to Menkes gene. Nat Genet 5:327–337

    Article  PubMed  CAS  Google Scholar 

  • Evenson MA (1988) Measurement of copper in biological samples by flame or electrothermal atomic absorption spectrometry. Method Enzymol 158:351–357

    Article  CAS  Google Scholar 

  • Ferenci P (2005) Wilson’s disease. Clin Gastroenterol Hepatol 3:726–733

    Article  PubMed  CAS  Google Scholar 

  • Ferenci P, Caca K, Loudianos G et al. (2003) Diagnosis and phenotypic classification of Wilson disease. Liver Int 23:139–142

    Article  PubMed  Google Scholar 

  • Ferns GA, Lamb DJ, Taylor A (1997) The possible role of copper ions in atherogenesis: the Blue Janus. Atherosclerosis 135:139–152

    Article  Google Scholar 

  • Fryer MJ (2009) Potential of vitamin E as an antioxidant adjunct in Wilson’s disease. Med Hypotheses 73:1029–1030

    Article  PubMed  CAS  Google Scholar 

  • Gu M, Cooper JM, Butler P et al. (2000) Oxidative-phosphorylation defects in liver of patients with Wilson’s disease. Lancet 356:469–474

    Article  PubMed  CAS  Google Scholar 

  • Iuliano L, Piccheri C, Coppola I, Praticò D, Micheletta F, Violi F (2000) Fluorescence quenching of dipyridamole associated to peroxyl radical scavenging: a versatile probe to measure the chain breaking antioxidant activity of biomolecules. Biochim Biophys Acta 1474:177–182

    Article  PubMed  CAS  Google Scholar 

  • Jimenez I, Aracena P, Letelier ME, Navarro P, Speisky H (2002) Chronic exposure to HepG2 cells to excess copper results in depletion of glutathione and induction of metallothionein. Toxicol In Vitro 16:167–175

    Article  PubMed  CAS  Google Scholar 

  • Maier-Dobersberger T, Ferenci P, Polli C et al. (1997) Detection of the His1069Gln mutation in Wilson disease by rapid polymerase chain reaction. Ann Intern Med 127:21–26

    PubMed  CAS  Google Scholar 

  • Merle U, Schaefer M, Ferenci P, Stremmel W (2007) Clinical presentation, diagnosis and long-term outcome of Wilson´s disease: a cohort study. Gut 56:115–120

    Article  PubMed  CAS  Google Scholar 

  • Nagasaka H, Inoue I, Inui A et al. (2006) Relationship between oxidative stress and antioxidant systems in the liver of patients with Wilson disease: hepatic manifestation in Wilson disease as a consequence of augmented oxidative stress. Pediatr Res 60:472–477

    Article  PubMed  CAS  Google Scholar 

  • Nagasaka H, Takayanagi M, Tsukahara H (2009) Children’s toxicology from bench to bed - Liver Injury (3): Oxidative stress and anti-oxidant systems in liver of patients with Wilson disease. J Toxicol Sci 34:229–236

    Article  Google Scholar 

  • Nevsimalova S, Buskova J, Bruha R et al. (2011) Sleep disorders in Wilson’s disease. Eur J Neurol 18:184–190

    Article  PubMed  CAS  Google Scholar 

  • Nicastro E, Loudianos G, Zancan L et al. (2009) Genotype-phenotype correlation in Italian children with Wilson’s disease. J Hepatol 50:555–561

    Article  PubMed  CAS  Google Scholar 

  • Ogihara H, Ogihara T, Miki M, Yasuda H, Mino M (1995) Plasma copper and antioxidant status in Wilson’s disease. Pediatr Res 37:219–226

    Article  PubMed  CAS  Google Scholar 

  • Ojeda CB, Rojas FS, Pavon JMC (1995) Recent developments in derivative ultraviolet/visible absorption spectrophotometery. Talanta 42:1195–1214

    Article  PubMed  CAS  Google Scholar 

  • Roberts EA, Schilsky ML (2008) Diagnosis and treatment of Wilson disease: An update. Hepatology 47:2089–2111

    Article  PubMed  CAS  Google Scholar 

  • Rodo M, Czlonkowska A, Pulawska M, Swiderska M, Tarnacka B, Wehr H (2000) The level of serum lipids, vitamin E and low density lipoprotein oxidation in Wilson’s disease patients. Eur J Neurol 7:491–494

    Article  PubMed  CAS  Google Scholar 

  • Scheinberg IH (1981) Wilson’s disease. J Rheumatol Suppl 7:90–93

    PubMed  CAS  Google Scholar 

  • Schiefermeier M, Kollegger H, Madl C et al. (2000) The impact of apolipoprotein E genotypes on age at onset of symptom and phenotypic expression in Wilson’s disease. Brain 123:585–590

    Article  PubMed  Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    Article  PubMed  CAS  Google Scholar 

  • Simon I, Schaefer M, Reichert J, Stremmel W (2008) Analysis of the human Atox 1 homologue in Wilson patients. World J Gastroenterol 14:2383–2387

    Article  PubMed  CAS  Google Scholar 

  • Sinha S, Christopher R, Arunodaya GR et al. (2005) Is low serum tocopherol in Wilson’s disease a significant symptom? J Neurol Sci 228:121–123

    Article  PubMed  CAS  Google Scholar 

  • Sokol RJ, Twedt D, McKim JM et al. (1994) Oxidant injury to hepatic mitochondria in patients with Wilson’s disease and Bedlington terriers with copper toxicosis. Gastroenterology 107:1788–1798

    PubMed  CAS  Google Scholar 

  • Sokol RJ, McKim JM Jr, Devereaux MW (1996) Alpha-tocopherol ameliorates oxidant injury in isolated copper-overloaded rat hepatocytes. Ped Res 39:259–263

    Article  CAS  Google Scholar 

  • Spisni E, Valerii MC, Manerba M et al. (2009) Effect of copper on extracellular levels of key pro-inflammatory molecules in hypothalamic GN11 and primary neurons. Neurotoxicology 30:605–612

    Article  PubMed  CAS  Google Scholar 

  • Stapelbroek JM, Bollen CW, Ploos van Amstel JK et al. (2004) The H1069Q mutation in ATP7B is associated with late and neurologic presentation in Wilson disease: results of a meta-analysis. J Hepatol 41:758–763

    Article  PubMed  CAS  Google Scholar 

  • Sternlieb I, Scheinberg IH (1968) Prevention of Wilson’s disease in asymptomatic patients. N Engl J Med 278:352–359

    Article  PubMed  CAS  Google Scholar 

  • Tanzi RE, Petrukhin K, Chernov I et al. (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5:344–350

    Article  PubMed  CAS  Google Scholar 

  • Thomas GR, Forbes JR, Roberts EA, Walshe JM, Cox DW (1995) The Wilson disease gene spectrum of mutations and their consequences. Nat Genet 9:210–217

    Article  PubMed  CAS  Google Scholar 

  • Videla LA, Fernandez V, Tapia G, Varela P (2003) Oxidative stress-mediated hepatotoxicity of iron and copper: Role of Kupfer cells. Biometals 16:103–111

    Article  PubMed  CAS  Google Scholar 

  • von Herbay A, de Groot H, Hegi U, Stremmel W, Strohmeyer G, Sies H (1994) Low vitamin E content in plasma of patients with alcoholic liver disease, hemochromatosis and Wilson’s disease. J Hepatol 20:41–6

    Article  Google Scholar 

  • Vrabelova S, Letocha O, Borsky M, Kozak L (2005) Mutation analysis of the ATP7B gene and genotype/phenotype correlation in 227 patients with Wilson disease. Mol Genet Metab 86:277–285

    Article  PubMed  CAS  Google Scholar 

  • Walter U, Krolikowski K, Tarnacka B, Benecke R, Czlonkowska A, Dressler D (2005) Sonographic detection of basal ganglia lesions in aswymptomatic and symptomatic Wilson disease. Neurology 64:1726–1732

    Article  PubMed  CAS  Google Scholar 

  • Weiss KH, Lozoya JC, Tuma S et al. (2008) Copper-induced translocation of the Wilson disease protein ATP7B independent of Murr1/COMMD1 and Rab7. Am J Pathol 173:1783–1794

    Article  PubMed  CAS  Google Scholar 

  • Weiss KH, Runz H, Noe B et al. (2010) Genetic analysis of BIRC4/XIAP as a putative modifier gene of Wilson disease. J Inherit Met Dis doi:10.1007/s10545-010-9123-5

  • Wright LM, Huster D, Lutsenko S, Wrba F, Ferenci P, Fimmel CJ (2009) Hepatocyte GP73 expression in Wilson disease. J Hepatol 51:557–564

    Article  PubMed  CAS  Google Scholar 

  • Zischka H, Lichtmannegger J, Schmitt S et al. (2011) Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson dinase. J Clin Invest 121:1508–1518

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Mgr. Skibova from IKEM Prague for her help with the statistical analysis.

Grant support

The study was supported by grant IGA MZ CR No. NT 12290/4 and NT 11247/4 provided by the IGA, Czech Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radan Bruha.

Additional information

Communicated by: Moacir Wajner

Competing interests: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruha, R., Vitek, L., Marecek, Z. et al. Decreased serum antioxidant capacity in patients with Wilson disease is associated with neurological symptoms. J Inherit Metab Dis 35, 541–548 (2012). https://doi.org/10.1007/s10545-011-9422-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9422-5

Keywords

Navigation