Skip to main content
Log in

Emerging therapies for neurodegenerative lysosomal storage disorders - from concept to reality

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Lysosomal storage disorders are inherited metabolic diseases in which a mutation in a gene encoding a lysosomal enzyme or lysosome-related protein results in the intra-cellular accumulation of substrate and reduced cell/tissue function. Few patients with neurodegenerative lysosomal storage disorders have access to safe and effective treatments although many therapeutic strategies have been or are presently being studied in vivo thanks to the availability of a large number of animal models. This review will describe the comparative advancement of a variety of therapeutic strategies through the ‘research pipeline’. Our goal is to provide information for clinicians, researchers and patients/families alike on the leading therapeutic candidates at this point in time, and also to provide information on emerging approaches that may provide a safe and effective treatment in the future. The length of the pipeline represents the significant and sustained effort required to move a novel concept from the laboratory into the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arfi A, Richard M, Gandolphe C et al. (2010) Storage correction in cells of patients suffering from mucopolysaccharidoses types IIIA and VII after treatment with genistein and other isoflavones. J Inherit Metab Dis 33:61–67

    Article  PubMed  CAS  Google Scholar 

  • Blanz J, Stroobants S, Lüllmann-Rauch R et al. (2008) Reversal of peripheral and central neural storage and ataxia after recombinant enzyme replacement therapy in alpha-mannosidosis mice. Hum Mol Genet 17:3437–3445

    Article  PubMed  CAS  Google Scholar 

  • Boado RJ, Pardridge WM (2010) Genetic engineering of IgG-glucuronidase fusion proteins. J Drug Target 18:205–211

    Article  PubMed  CAS  Google Scholar 

  • Boado RJ, Zhang Y, Zhang Y et al. (2008) Genetic engineering of a lysosomal enzyme fusion protein for targeted delivery across the human blood-brain barrier. Biotechnol Bioeng 99:475–484

    Article  PubMed  CAS  Google Scholar 

  • Boado RJ, Hui EK, Lu JZ et al. (2009) AGT-181: expression in CHO cells and pharmacokinetics, safety, and plasma iduronidase enzyme activity in Rhesus monkeys. J Biotechnol 144:135–141

    Article  PubMed  CAS  Google Scholar 

  • Boelens JJ, Prasad VK, Tolar J et al. (2010) Current international perspectives on hematopoietic stem cell transplantation for inherited metabolic disorders. Pediatr Clin North Am 57:123–145

    Article  PubMed  Google Scholar 

  • Bosch A, Perret E, Desmaris N et al. (2000) Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum Gene Ther 11:1139–1150

    Article  PubMed  CAS  Google Scholar 

  • Chang M, Cooper JD, Sleat DE et al. (2008) Intraventricular enzyme replacement improves disease phenotypes in a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol Ther 16:649–656

    Article  PubMed  CAS  Google Scholar 

  • Clarke JT, Mahuran DJ, Sathe S et al. (2011) An open-label Phase I/II clinical trial of pyrimethamine for the treatment of patients affected with chronic GM2 gangliosidosis (Tay-Sachs or Sandhoff variants). Mol Genet Metab 102:6–12

    Article  PubMed  CAS  Google Scholar 

  • Cox T, Lachmann R, Hollak C et al. (2000) Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355:1481–1485

    Article  PubMed  CAS  Google Scholar 

  • Crawley AC, King B, Berg T et al. (2006) Enzyme replacement therapy in alpha-mannosidosis guinea-pigs. Mol Genet Metab 89:48–57

    Article  PubMed  CAS  Google Scholar 

  • Crawley AC, Marshall N, Beard H, Hassiotis S, Walsh V, King B, Hucker N, Fuller M, Jolly RD, Hopwood JJ, Hemsley KM (2011) Enzyme replacement reduces neuropathology in MPS IIIA dogs. Neurobiol Dis. doi: 10.1016/j.nbd.2011.04.014

  • Dawson G, Schroeder C, Dawson PE (2010) Palmitoyl:protein thioesterase (PPT1) inhibitors can act as pharmacological chaperones in infantile Batten disease. Biochem Biophys Res Commun 395:66–69

    Article  PubMed  CAS  Google Scholar 

  • Denny CA, Kasperzyk JL, Gorham KN et al. (2006) Influence of caloric restriction on motor behavior, longevity, and brain lipid composition in Sandhoff disease mice. J Neurosci Res 83:1028–1038

    Article  PubMed  CAS  Google Scholar 

  • Dickson P, McEntee M, Vogler C et al. (2007) Intrathecal enzyme replacement therapy: successful treatment of brain disease via the cerebrospinal fluid. Mol Genet Metab 91:61–68

    Article  PubMed  CAS  Google Scholar 

  • Dodge JC, Clarke J, Treleaven CM et al. (2009) Intracerebroventricular infusion of acid sphingomyelinase corrects CNS manifestations in a mouse model of Niemann-Pick A disease. Exp Neurol 215:349–357

    Article  PubMed  CAS  Google Scholar 

  • Duffner PK, Caggana M, Orsini JJ et al. (2009) Newborn screening for Krabbe disease: the New York State model. Pediatr Neurol 40:245–252

    Article  PubMed  Google Scholar 

  • Dunder U, Kaartinen V, Valtonen P et al. (2000) Enzyme replacement therapy in a mouse model of aspartylglycosaminuria. FASEB J 14:361–367

    PubMed  CAS  Google Scholar 

  • Dunder U, Valtonen P, Kelo E et al. (2010) Early initiation of enzyme replacement therapy improves metabolic correction in the brain tissue of aspartylglycosaminuria mice. J Inherit Metab Dis 33:611–617

    Article  PubMed  CAS  Google Scholar 

  • Ellinwood NM, Ausseil J, Desmaris N et al. (2011) Safe, efficient and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes. Mol Ther 19:251–259

    Article  PubMed  CAS  Google Scholar 

  • Fan JQ (2008) A counterintuitive approach to treat enzyme deficiencies: use of enzyme inhibitors for restoring mutant enzyme activity. Biol Chem 389:1–11

    Article  PubMed  CAS  Google Scholar 

  • Fee R (2007) The cost of clinical trials. Drug Discovery Dev 10:32

    Google Scholar 

  • Friso A, Tomanin R, Salvalaio M et al. (2010) Genistein reduces glycosaminoglycan levels in a mouse model of mucopolysaccharidosis type II. Br J Pharmacol 159:1082–1091

    Article  PubMed  CAS  Google Scholar 

  • Ghodsi A, Stein C, Derksen T et al. (1998) Extensive beta-glucuronidase activity in murine central nervous system after adenovirus-mediated gene transfer to brain. Hum Gene Ther 9:2331–2340

    Article  PubMed  CAS  Google Scholar 

  • Grubb JH, Vogler C, Levy B et al. (2008) Chemically modified beta-glucuronidase crosses blood-brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. Proc Natl Acad Sci USA 105:2616–2621

    Article  PubMed  CAS  Google Scholar 

  • Harmatz P, Ketteridge D, Giugliani R et al. (2005) Direct comparison of measures of endurance, mobility, and joint function during enzyme-replacement therapy of muco-polysaccharidosis VI (Maroteaux-Lamy syndrome): results after 48 weeks in a phase 2 open-label clinical study of recombinant human N-acetylgalactosamine 4-sulfatase. Pediatrics 115:e681–e689

    Article  PubMed  Google Scholar 

  • Haskins M (2009) Gene therapy for lysosomal storage diseases (LSDs) in large animal models. ILAR J 50:112–121

    PubMed  CAS  Google Scholar 

  • Heldermon CD, Ohlemiller KK, Herzog ED et al. (2010) Therapeutic efficacy of bone marrow transplant, intracranial AAV-mediated gene therapy, or both in the mouse model of MPS IIIB. Mol Ther 18:873–880

    Article  PubMed  CAS  Google Scholar 

  • Hemsley KM, King B, Hopwood JJ (2007) Injection of recombinant human sulfamidase into the CSF via the cerebellomedullary cistern in MPS IIIA mice. Mol Genet Metab 90:313–328

    Article  PubMed  CAS  Google Scholar 

  • Hemsley KM, Beard H, King BM et al. (2008) Effect of high dose, repeated intra-CSF injection of sulphamidase on neuropathology in MPS IIIA mice. Genes Brain Behav 7:740–753

    Article  CAS  Google Scholar 

  • Hemsley KM, Luck AJ, Crawley AC et al. (2009a) Examination of intravenous and intra-CSF protein delivery for treatment of neurological disease. Eur J Neurosci 29:1197–1214

    Article  PubMed  Google Scholar 

  • Hemsley KM, Norman EJ, Crawley AC et al. (2009b) Effect of cisternal sulfamidase delivery in MPS IIIA Huntaway dogs-A proof of principle study. Mol Genet Metab 98:383–392

    Article  PubMed  CAS  Google Scholar 

  • Hwu WL, Chein YH, Lee NC et al. (2009) Newborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c.936 + 919 G > A (IVS4 + 919 G > A). Hum Mutat 30:1397–1405

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar M, Smith DA, Williams IM et al. (2004) NSAIDs increase survival in the Sandhoff disease mouse: synergy with N-butyldeoxynojirimycin. Ann Neurol 56:642–649

    Article  PubMed  CAS  Google Scholar 

  • Kakkis ED, Muenzer J, Tiller GE et al. (2001) Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med 344:182–188

    Article  PubMed  CAS  Google Scholar 

  • Kakkis E, McEntee M, Vogler C et al. (2004) Intrathecal enzyme replacement therapy reduces lysosomal storage in the brain and meninges of the canine model of MPS I. Mol Genet Metab 83:163–174

    Article  PubMed  CAS  Google Scholar 

  • Lacorazza HD, Flax JD, Snyder EY et al. (1996) Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat Med 2:424–429

    Article  PubMed  CAS  Google Scholar 

  • Lau AA, Hannouche H, Rozaklis T et al. (2010) Allogeneic stem cell transplantation does not improve neurological deficits in mucopolysaccharidosis type IIIA mice. Exp Neurol 225:445–454

    Article  PubMed  CAS  Google Scholar 

  • Lee WC, Courtenay A, Troendle FJ et al. (2005) Enzyme replacement therapy results in substantial improvements in early clinical phenotype in a mouse model of globoid cell leukodystrophy. FASEB J 19:1549–1551

    Article  PubMed  CAS  Google Scholar 

  • Lee WC, Tsoi YK, Troendle FJ et al. (2007) Single-dose intracerebroventricular administration of galactocerebrosidase improves survival in a mouse model of globoid cell leukodystrophy. FASEB J 21:2520–2527

    Article  PubMed  CAS  Google Scholar 

  • Lee WC, Kang D, Causevic E et al. (2010) Molecular characterization of mutations that cause globoid cell leukodystrophy and pharmacological rescue using small molecule chemical chaperones. J Neurosci 30:5489–5497

    Article  PubMed  CAS  Google Scholar 

  • Lin HY, Chong KW, Hsu JH et al. (2009) High incidence of the cardiac variant of Fabry disease revealed by newborn screening in the Taiwan Chinese population. Circ Cardiovasc Genet 2:450–456

    Article  PubMed  Google Scholar 

  • Llinares J (2010) A regulatory overview about rare diseases. In Posada de la Paz M, Groft SC, eds. Rare Diseases Epidemiology, Advances in Exp. Med. Biol. Springer, Berlin, 193–207

  • Lu JZ, Hui EK, Boado RJ et al. (2010) Genetic engineering of a bifunctional IgG fusion protein with iduronate-2-sulfatase. Bioconjug Chem 21:151–156

    Article  PubMed  CAS  Google Scholar 

  • Luzi P, Abraham RM, Rafi MA et al. (2009) Effects of treatments on inflammatory and apoptotic markers in the CNS of mice with globoid cell leukodystrophy. Brain Res 1300:146–158

    Article  PubMed  CAS  Google Scholar 

  • Maegawa GH, van Giersbergen PL, Yang S et al. (2009a) Pharmacokinetics, safety and tolerability of miglustat in the treatment of pediatric patients with GM2 gangliosidosis. Mol Genet Metab 97:284–291

    Article  PubMed  CAS  Google Scholar 

  • Maegawa GH, Banwell BL, Blaser S et al. (2009b) Substrate reduction therapy in juvenile GM2 gangliosidosis. Mol Genet Metab 98:215–224

    Article  PubMed  CAS  Google Scholar 

  • Malinowska M, Wilkinson FL, Bennett W et al. (2009) Genistein reduces lysosomal storage in peripheral tissues of mucopolysaccharide IIIB mice. Mol Genet Metab 98:235–242

    Article  PubMed  CAS  Google Scholar 

  • Malinowska M, Wilkinson FL, Langford-Smith KJ et al. (2010) Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS ONE 5:e14192

    Article  PubMed  CAS  Google Scholar 

  • Matsuda J, Suzuki O, Oshima A et al. (2003) Chemical chaperone therapy for brain pathology in GM1-gangliosidosis. Proc Natl Acad Sci USA 100:15912–15917

    Article  PubMed  CAS  Google Scholar 

  • Matzner U, Lüllmann-Rauch R, Stroobants S et al. (2009) Enzyme replacement improves ataxic gait and central nervous system histopathology in a mouse model of metachromatic leukodystrophy. Mol Ther 17:600–606

    Article  PubMed  CAS  Google Scholar 

  • Meikle PJ, Hopwood JJ, Clague AE et al. (1999) Prevalence of lysosomal storage disorders. JAMA 281:249–254

    Article  PubMed  CAS  Google Scholar 

  • Montaño AM, Oikawa H, Tomatsu S et al. (2008) Acidic amino acid tag enhances response to enzyme replacement in mucopolysaccharidosis type VII mice. Mol Genet Metab 94:178–189

    Article  PubMed  Google Scholar 

  • Muenzer J, Lamsa JC, Garcia A (2002) Enzyme replacement therapy in mucopolysaccharidosis type II (Hunter syndrome): a preliminary report. Acta Paediatr Suppl 91:98–99

    Article  PubMed  CAS  Google Scholar 

  • Ohashi T, Watabe K, Uehara K et al. (1997) Adenovirus-mediated gene transfer and expression of human beta-glucuronidase gene in the liver, spleen, and central nervous system in mucopolysaccharidosis type VII mice. Proc Natl Acad Sci USA 94:1287–1292

    Article  PubMed  CAS  Google Scholar 

  • Osborn MJ, McElmurry RT, Peacock B et al. (2008) Targeting of the CNS in MPS-IH using a nonviral transferrin-alpha-L-iduronidase fusion gene product. Mol Ther 16:1459–1466

    Article  PubMed  CAS  Google Scholar 

  • Osher E, Fattal-Valevski A, Sagie L et al. (2010) Pyrimethamine increases β-hexosaminidase A activity in patients with Late Onset Tay Sachs. Mol Genet Metab Dec 4 [Epub ahead of print]

  • Pannuzzo G, Cardile V, Costantino-Ceccarini E et al. (2010) A galactose-free diet enriched in soy isoflavones and antioxidants results in delayed onset of symptoms of Krabbe disease in twitcher mice. Molec Genet Metab 100:234–240

    Article  PubMed  CAS  Google Scholar 

  • Parenti G (2009) Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 1:268–279

    Article  PubMed  CAS  Google Scholar 

  • Patterson MC, Vecchio D, Prady H et al. (2007) Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol 6:765–772

    Article  PubMed  CAS  Google Scholar 

  • Patterson MC, Vecchio D, Jacklin E et al. (2010) Long-term miglustat therapy in children with Niemann-Pick disease type C. J Child Neurol 25:300–305

    Article  PubMed  Google Scholar 

  • Piotrowska E, Jakobkiewicz-Banecka J, Tylki-Szymanska A et al. (2008) Genistin-rich soy isoflavone extract in substrate reduction therapy for Sanfilippo syndrome: an open-label, pilot study in 10 pediatric patients. Curr Ther Res 69:166–179

    Article  CAS  Google Scholar 

  • Platt FM, Jeyakumar M (2008) Substrate reduction therapy. Acta Paediatr Suppl 457:88–93

    Article  Google Scholar 

  • Polito VA, Abbondante S, Polishchuck RS et al. (2010) Correction of CNS defects in the MPS II mouse model via systemic enzyme replacement therapy. Hum Mol Genet 19:4871–4885

    Article  PubMed  CAS  Google Scholar 

  • Ringe D, Petsko GA (2009) What are pharmacological chaperones and why are they interesting? J Biol 8:80

    Article  PubMed  Google Scholar 

  • Roces DP, Lullmann-Rauch R, Peng J et al. (2004) Efficacy of enzyme replacement therapy in alpha-mannosidosis mice: a preclinical animal study. Hum Mol Genet 13:1979–1988

    Article  PubMed  CAS  Google Scholar 

  • Rozaklis T, Beard H, Hassiotis S, Garcia AR, Tonini M, Luck A, Pan J, Lamsa JC, Hopwood J, Hemsley KM (2011) Exp Neurol. doi: 10.1016/j.expneurol.2011.04.004

  • Sands MS, Haskins ME (2008) CNS-directed gene therapy for lysosomal storage diseases. Acta Paediatr Suppl 97:22–27

    Article  PubMed  Google Scholar 

  • Schiffmann R, Kopp JB, Austin HA et al. (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285:2743–2749

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann R, Fitzgibbon EJ, Harris C et al. (2008) Randomized, controlled trial of miglustat in Gaucher's disease type 3. Ann Neurol 64:514–522

    Article  PubMed  Google Scholar 

  • Shapiro BE, Pastores GM, Gianutsos J et al. (2009) Miglustat in late-onset Tay-Sachs disease: a 12-month, randomized, controlled clinical study with 24 months of extended treatment. Genet Med 11:425–433

    Article  PubMed  CAS  Google Scholar 

  • Smith D, Wallom KL, Williams IM et al. (2009) Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiol Dis 36:242–251

    Article  PubMed  CAS  Google Scholar 

  • Snyder EY, Taylor RM, Wolfe JH (1995) Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374:367–370

    Article  PubMed  CAS  Google Scholar 

  • Sorrentino NC, Spampanato C, Fraldi A et al. (2010) A novel systemic adeno-associated virus-mediated gene therapy to cross the blood-brain barrier and rescue the brain pathology in Mucopolysaccharidosis IIIA. Poster presentation at the 11th International Symposium on Mucopolysaccharide and Related Disorders

  • Souweidane MM, Fraser JF, Arkin LM et al. (2010) Gene therapy for late infantile neuronal ceroid lipofuscinosis: neurosurgical considerations. J Neurosurg Pediatr 6:115–122

    Article  PubMed  Google Scholar 

  • Spada M, Pagliardini S, Yasuda M et al. (2006) High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet 79:31–40

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Ogawa S, Sakakibara Y (2009) Chaperone therapy for neuronopathic lysosomal diseases: competitive inhibitors as chemical chaperones for enhancement of mutant enzyme activities. Perspect Medicinal Chem 3:7–19

    PubMed  CAS  Google Scholar 

  • Tamaki SJ, Jacobs Y, Dohse M et al. (2009) Neuroprotection of host cells by human central nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis. Cell Stem Cell 5:310–319

    Article  PubMed  CAS  Google Scholar 

  • Tsuji D, Akeboshi H, Matsuoka K et al. (2010) Highly phosphomannosylated enzyme replacement therapy for GM2 gangliosidosis. Ann Neurol

  • Urayama A, Grubb JH, Sly WS et al. (2008) Mannose 6-phosphate receptor-mediated transport of sulfamidase across the blood-brain barrier in the newborn mouse. Mol Ther 16:1261–1266

    Article  PubMed  CAS  Google Scholar 

  • Van den Hout H, Reuser AJ, Vulto AG et al. (2000) Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet 356:397–398

    Article  PubMed  Google Scholar 

  • Vogler C, Levy B, Grubb JH et al. (2005) Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc Natl Acad Sci USA 102:14777–14782

    Article  PubMed  CAS  Google Scholar 

  • Watson GL, Sayles JN, Chen C et al. (1998) Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus. Gene Ther 5:1642–1649

    Article  PubMed  CAS  Google Scholar 

  • Wegrzyn G, Jakóbkiewicz-Banecka J, Gabig-Cimińska M et al. (2010) Genistein: a natural isoflavone with a potential for treatment of genetic diseases. Biochem Soc Trans 38:695–701

    Article  PubMed  CAS  Google Scholar 

  • Worgall S, Sondhi D, Hackett NR et al. (2008) Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther 19:463–474

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Ryazantsev S, Ohmi K et al. (2004) Retrovirally transduced bone marrow has a therapeutic effect on brain in the mouse model of mucopolysaccharidosis IIIB. Mol Genet Metab 82:286–295

    Article  PubMed  CAS  Google Scholar 

Download references

Role of funding sources

The authors have received funding for their research from the Australian National Health and Medical Research Council of Australia, the Sanfilippo Children’s Research Foundation (Canada), Swiss Sanfilippo Foundation, Alliance Sanfilippo, the National MPS Society (USA), the Isaac Foundation, the Women’s and Children’s Hospital Research Foundation and Shire Human Genetic Therapies. The funding sources did not have any role in the writing of this review or in the decision to submit it for publication.

Competing interest

International patents are held by JJH and others for mammalian sulphamidase, iduronate 2-sulphatase and α-iduronidase and genetic sequences encoding these proteins for use in the investigation, diagnosis and treatment of subjects suspected of suffering from sulphamidase, iduronate-2-sulphatase and α-iduronidase deficiencies (US Patent # 5863782, 5728381 and 6149909, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim M. Hemsley.

Additional information

Communicated by: Gregory M. Pastores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemsley, K.M., Hopwood, J.J. Emerging therapies for neurodegenerative lysosomal storage disorders - from concept to reality. J Inherit Metab Dis 34, 1003–1012 (2011). https://doi.org/10.1007/s10545-011-9341-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9341-5

Keywords

Navigation