Skip to main content
Log in

Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation

  • CDG - An Update
  • Published:
Journal of Inherited Metabolic Disease

Abtract

N-linked glycosylation is one of the most abundant modifications of proteins in eukaryotic organisms. In the central reaction of the pathway, oligosaccharyltransferase (OST), a multimeric complex located at the membrane of the endoplasmic reticulum, transfers a preassembled oligosaccharide to selected asparagine residues within the consensus sequence asparagine-X-serine/threonine. Due to the high substrate specificity of OST, alterations in the biosynthesis of the oligosaccharide substrate result in the hypoglycosylation of many different proteins and a multitude of symptoms observed in the family of congenital disorders of glycosylation (CDG) type I. This review covers our knowledge of human OST and describes enzyme composition. The Stt3 subunit of OST harbors the catalytic center of the enzyme, but the function of the other, highly conserved, subunits are less well defined. Some components seem to be involved in the recognition and utilization of glycosylation sites in specific glycoproteins. Indeed, mutations in the subunit paralogs N33/Tusc3 and IAP do not yield the pleiotropic phenotypes typical for CDG type I but specifically result in nonsyndromic mental retardation, suggesting that the oxidoreductase activity of these subunits is required for glycosylation of a subset of proteins essential for brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82

    Article  PubMed  CAS  Google Scholar 

  • Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA, Tibshirani R, Maitra A, Pollack JR (2005) Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 7:556–562

    Article  PubMed  CAS  Google Scholar 

  • Bause E, Legler G (1981) The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J 195:639–644

    PubMed  CAS  Google Scholar 

  • Bause E, Breuer W, Peters S (1995) Investigation of the active site of oligosaccharyltransferase from pig liver using synthetic tripeptides as tools. Biochem J312(Pt 3):979–985

    Google Scholar 

  • Bause E, Wesemann M, Bartoschek A, Breuer W (1997) Epoxyethylglycyl peptides as inhibitors of oligosaccharyltransferase: double-labelling of the active site. Biochem J 322(Pt 1):95–102

    PubMed  CAS  Google Scholar 

  • Ben-Dor S, Esterman N, Rubin E, Sharon N (2004) Biases and complex patterns in the residues flanking protein N-glycosylation sites. Glycobiology 14:95–101

    Article  PubMed  CAS  Google Scholar 

  • Brewster JL, Martin SL, Toms J, Goss D, Wang K, Zachrone K, Davis A, Carlson G, Hood L, Coffin JD (2000) Deletion of Dad1 in mice induces an apoptosis-associated embryonic death. Genesis 26:271–278

    Article  PubMed  CAS  Google Scholar 

  • Burda P, Aebi M (1999) The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta 1426:239–257

    PubMed  CAS  Google Scholar 

  • Castro O, Movsichoff F, Parodi AJ (2006) Preferential transfer of the complete glycan is determined by the oligosaccharyltransferase complex and not by the catalytic subunit. Proc Natl Acad Sci USA 103:14756–14760

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Jiang X, Sun D, Han G, Wang F, Ye M, Wang L, Zou H (2009) Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 8:651–661

    Article  PubMed  CAS  Google Scholar 

  • Cooke SL, Pole JC, Chin SF, Ellis IO, Caldas C, Edwards PA (2008) High-resolution array CGH clarifies events occurring on 8p in carcinogenesis. BMC Cancer 8:288

    Article  PubMed  Google Scholar 

  • Crimaudo C, Hortsch M, Gausepohl H, Meyer DI (1987) Human ribophorins I and II: the primary structure and membrane topology of two highly conserved rough endoplasmic reticulum-specific glycoproteins. EMBO J 6:75–82

    PubMed  CAS  Google Scholar 

  • Dempski RE Jr, Imperiali B (2002) Oligosaccharyl transferase: gatekeeper to the secretory pathway. Curr Opin Chem Biol 6:844–850

    Article  PubMed  CAS  Google Scholar 

  • Fetrow JS, Siew N, Di Gennaro JA, Martinez-Yamout M, Dyson HJ, Skolnick J (2001) Genomic-scale comparison of sequence- and structure-based methods of function prediction: does structure provide additional insight? Protein Sci 10:1005–1014

    Article  PubMed  CAS  Google Scholar 

  • Freeze HH, Aebi M (2005) Altered glycan structures: the molecular basis of congenital disorders of glycosylation. Curr Opin Struct Biol 15:490–498

    Article  PubMed  CAS  Google Scholar 

  • Frickel EM, Riek R, Jelesarov I, Helenius A, Wuthrich K, Ellgaard L (2002) TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci USA 99:1954–1959

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Ren M, Kreibich G (1997) Interactions among subunits of the oligosaccharyltransferase complex. J Biol Chem 272:29687–29692

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Pirozzi G, Sanjay A, Levy R, Chen Y, De Lemos-Chiarandini C, Sabatini D, Kreibich G (2000) Localization of ribophorin II to the endoplasmic reticulum involves both its transmembrane and cytoplasmic domains. Eur J Cell Biol 79:219–228

    Article  PubMed  CAS  Google Scholar 

  • Garshasbi M, Hadavi V, Habibi H, Kahrizi K, Kariminejad R, Behjati F, Tzschach A, Najmabadi H, Ropers HH, Kuss AW (2008) A defect in the TUSC3 gene is associated with autosomal recessive mental retardation. Am J Hum Genet 82:1158–1164

    Article  PubMed  CAS  Google Scholar 

  • Gaynor EC, Te Heesen S, Graham TR, Aebi M, Emr SD (1994) Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast. J Cell Biol 127:653–665

    Article  PubMed  CAS  Google Scholar 

  • Ge X, Loh HH, Law PY (2009) mu-Opioid receptor cell surface expression is regulated by its direct interaction with Ribophorin I. Mol Pharmacol 75:1307–1316

    Article  PubMed  CAS  Google Scholar 

  • Gorlich D, Prehn S, Hartmann E, Kalies KU, Rapoport TA (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71:489–503

    Article  PubMed  CAS  Google Scholar 

  • Hardt B, Aparicio R, Bause E (2000) The oligosaccharyltransferase complex from pig liver: cDNA cloning, expression and functional characterisation. Glycoconj J 17:767–779

    Article  PubMed  CAS  Google Scholar 

  • Hardt B, Aparicio R, Breuer W, Bause E (2001) Analysis of structural signals conferring localisation of pig OST48 to the endoplasmic reticulum. Biol Chem 382:1039–1047

    Article  PubMed  CAS  Google Scholar 

  • Helenius A (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 5:253–265

    PubMed  CAS  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  PubMed  CAS  Google Scholar 

  • Hese K, Otto C, Routier FH, Lehle L (2009) The yeast oligosaccharyltransferase complex can be replaced by STT3 from Leishmania major. Glycobiology 19:160–171

    Article  PubMed  CAS  Google Scholar 

  • Hong NA, Flannery M, Hsieh SN, Cado D, Pedersen R, Winoto A (2000) Mice lacking Dad1, the defender against apoptotic death-1, express abnormal N-linked glycoproteins and undergo increased embryonic apoptosis. Dev Biol 220:76–84

    Article  PubMed  CAS  Google Scholar 

  • Honma K, Iwao-Koizumi K, Takeshita F, Yamamoto Y, Yoshida T, Nishio K, Nagahara S, Kato K, Ochiya T (2008) RPN2 gene confers docetaxel resistance in breast cancer. Nat Med 14:939–948

    Article  PubMed  CAS  Google Scholar 

  • Hulsmeier AJ, Paesold-Burda P, Hennet T (2007) N-glycosylation site occupancy in serum glycoproteins using multiple reaction monitoring liquid chromatography-mass spectrometry. Mol Cell Proteomics 6:2132–2138

    Article  PubMed  CAS  Google Scholar 

  • Igura M, Maita N, Kamishikiryo J, Yamada M, Obita T, Maenaka K, Kohda D (2008) Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J 27:234–243

    Article  PubMed  CAS  Google Scholar 

  • Imperiali B, Shannon KL (1991) Differences between Asn-Xaa-Thr-containing peptides: a comparison of solution conformation and substrate behavior with oligosaccharyltransferase. Biochemistry 30:4374–4380

    Article  PubMed  CAS  Google Scholar 

  • Imperiali B, Shannon KL, Rickert KW (1992) Role of peptide conformation in Asparagine-Linked glycosylation. J Am Chem Soc 114:7942–7944

    Article  CAS  Google Scholar 

  • Izquierdo L, Schulz BL, Rodrigues JA, Guther MLS, Procter JB, Barton GJ, Aebi M, Ferguson MAJ (2009) Distinct donor and acceptor specificities of Trypanosoma brucei oligosaccharyltransferases. EMBO J 28:2650–2661

    Article  PubMed  CAS  Google Scholar 

  • Karaoglu D, Kelleher DJ, Gilmore R (2001) Allosteric regulation provides a molecular mechanism for preferential utilization of the fully assembled dolichol-linked oligosaccharide by the yeast oligosaccharyltransferase. Biochemistry 40:12193–12206

    Article  PubMed  CAS  Google Scholar 

  • Kelleher DJ, Gilmore R (1997) DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. Proc Natl Acad Sci USA 94:4994–4999

    Article  PubMed  CAS  Google Scholar 

  • Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62R

    Article  PubMed  CAS  Google Scholar 

  • Kelleher DJ, Kreibich G, Gilmore R (1992) Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell 69:55–65

    Article  PubMed  CAS  Google Scholar 

  • Kelleher DJ, Karaoglu D, Mandon EC, Gilmore R (2003) Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol Cell 12:101–111

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Park H, Montalvo L, Lennarz WJ (2000) Studies on the role of the hydrophobic domain of OST4p in interactions with other subunits of yeast oligosaccharyl transferase. Proc Natl Acad Sci USA 97:1516–1520

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Yan Q, Von Heijne G, Caputo GA, Lennarz WJ (2003) Determination of the membrane topology of Ost4p and its subunit interactions in the oligosaccharyltransferase complex in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100:7460–7464

    Article  PubMed  CAS  Google Scholar 

  • Kreibich G, Czako-Graham M, Grebenau R, Mok W, Rodriguez-Boulan E, Sabatini DD (1978a) Characterization of the ribosomal binding site in rat liver rough microsomes: ribophorins I and II, two integral membrane proteins related to ribosome binding. J Supramol Struct 8:279–302

    Article  PubMed  CAS  Google Scholar 

  • Kreibich G, Freienstein CM, Pereyra BN, Ulrich BL, Sabatini DD (1978b) Proteins of rough microsomal membranes related to ribosome binding. II. Cross-linking of bound ribosomes to specific membrane proteins exposed at the binding sites. J Cell Biol 77:488–506

    Article  PubMed  CAS  Google Scholar 

  • Kreibich G, Ulrich BL, Sabatini DD (1978c) Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristics of rough microsomes. J Cell Biol 77:464–487

    Article  PubMed  CAS  Google Scholar 

  • Li H, Chavan M, Schindelin H, Lennarz WJ, Li HL (2008) Structure of the oligosaccharyl transferase complex at 12 angstrom resolution. Structure 16:432–440

    Article  PubMed  CAS  Google Scholar 

  • MacGrogan D, Levy A, Bova GS, Isaacs WB, Bookstein R (1996) Structure and methylation-associated silencing of a gene within a homozygously deleted region of human chromosome band 8p22. Genomics 35:55–65

    Article  PubMed  CAS  Google Scholar 

  • Makishima T, Nakashima T, Nagata-Kuno K, Fukushima K, Iida H, Sakaguchi M, Ikehara Y, Komiyama S, Nishimoto T (1997) The highly conserved DAD1 protein involved in apoptosis is required for N-linked glycosylation. Genes Cells 2:129–141

    Article  PubMed  CAS  Google Scholar 

  • Marcantonio EE, Amar-Costesec A, Kreibich G (1984) Segregation of the polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes. II. Rat liver microsomal subfractions contain equimolar amounts of ribophorins and ribosomes. J Cell Biol 99:2254–2259

    Article  PubMed  CAS  Google Scholar 

  • Menetret JF, Neuhof A, Morgan DG, Plath K, Radermacher M, Rapoport TA, Akey CW (2000) The structure of ribosome-channel complexes engaged in protein translocation. Mol Cell 6:1219–1232

    Article  PubMed  CAS  Google Scholar 

  • Miletich JP, Broze GJ Jr (1990) Beta protein C is not glycosylated at asparagine 329. The rate of translation may influence the frequency of usage at asparagine-X-cysteine sites. J Biol Chem 265:11397–11404

    PubMed  CAS  Google Scholar 

  • Molinari F, Foulquier F, Tarpey PS, Morelle W, Boissel S, Teague J, Edkins S, Futreal PA, Stratton MR, Turner G, Matthijs G, Gecz J, Munnich A, Colleaux L (2008) Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am J Hum Genet 82:1150–1157

    Article  PubMed  CAS  Google Scholar 

  • Nakashima T, Sekiguchi T, Kuraoka A, Fukushima K, Shibata Y, Komiyama S, Nishimoto T (1993) Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Mol Cell Biol 13:6367–6374

    PubMed  CAS  Google Scholar 

  • Nasab FP, Schulz BL, Gamarro F, Parodi AJ, Aebi M (2008) All in one: leishmania major STT3 proteins substitute for the whole oligosaccharyltransferase complex in Saccharomyces cerevisiae. Mol Biol Cell 19:3758–3768

    Article  PubMed  CAS  Google Scholar 

  • Nilsson I, Kelleher DJ, Miao Y, Shao Y, Kreibich G, Gilmore R, Von Heijne G, Johnson AE (2003) Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex. J Cell Biol 161:715–725

    Article  PubMed  CAS  Google Scholar 

  • Nishii K, Tsuzuki T, Kumai M, Takeda N, Koga H, Aizawa S, Nishimoto T, Shibata Y (1999) Abnormalities of developmental cell death in Dad1-deficient mice. Genes Cells 4:243–252

    Article  PubMed  CAS  Google Scholar 

  • Parodi AJ (2000) Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem J 348(Pt 1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Pathak R, Hendrickson TL, Imperiali B (1995) Sulfhydryl modification of the yeast Wbp1p inhibits oligosaccharyl transferase activity. Biochemistry 34:4179–4185

    Article  PubMed  CAS  Google Scholar 

  • Paulson JC (1989) Glycoproteins: what are the sugar chains for? Trends Biochem Sci 14:272–276

    Article  PubMed  CAS  Google Scholar 

  • Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR (2004) Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14:103–114

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Canada C, Kelleher DJ, Gilmore R (2009) Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136:272–283

    Article  PubMed  CAS  Google Scholar 

  • Sanjay A, Fu J, Kreibich G (1998) DAD1 is required for the function and the structural integrity of the oligosaccharyltransferase complex. J Biol Chem 273:26094–26099

    Article  PubMed  CAS  Google Scholar 

  • Schulz BL, Aebi M (2009) Analysis of glycosylation site occupancy reveals a role for OST3p and OST6p in site-specific N-glycosylation efficiency. Mol Cell Proteomics 8:357–364

    PubMed  CAS  Google Scholar 

  • Schulz BL, Stirnimann CU, Grimshaw JP, Brozzo MS, Fritsch F, Mohorko E, Capitani G, Glockshuber R, Grutter MG, Aebi M (2009) Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. Proc Natl Acad Sci USA 106:11061–11066

    Article  PubMed  CAS  Google Scholar 

  • Sharma CB, Lehle L, Tanner W (1981) N-Glycosylation of yeast proteins. Characterization of the solubilized oligosaccharyl transferase. Eur J Biochem 116:101–108

    Article  PubMed  CAS  Google Scholar 

  • Shibatani T, David LL, McCormack AL, Frueh K, Skach WR (2005) Proteomic analysis of mammalian oligosaccharyltransferase reveals multiple subcomplexes that contain Sec61, TRAP, and two potential new subunits. Biochemistry 44:5982–5992

    Article  PubMed  CAS  Google Scholar 

  • Silberstein S, Kelleher DJ, Gilmore R (1992) The 48-kDa subunit of the mammalian oligosaccharyltransferase complex is homologous to the essential yeast protein WBP1. J Biol Chem 267:23658–23663

    PubMed  CAS  Google Scholar 

  • Spirig U, Glavas M, Bodmer D, Reiss G, Burda P, Lippuner V, Te Heesen S, Aebi M (1997) The STT3 protein is a component of the yeast oligosaccharyltransferase complex. Mol Gen Genet 256:628–637

    Article  PubMed  CAS  Google Scholar 

  • Spirig U, Bodmer D, Wacker M, Burda P, Aebi M (2005) The 3.4-kDa OstOST4 protein is required for the assembly of two distinct oligosaccharyltransferase complexes in yeast. Glycobiology 15:1396–1406

    Article  PubMed  CAS  Google Scholar 

  • Surani MA (1979) Glycoprotein synthesis and inhibition of glycosylation by tunicamycin in preimplantation mouse embryos: compaction and trophoblast adhesion. Cell 18:217–227

    Article  PubMed  CAS  Google Scholar 

  • Tai VW, Imperiali B (2001) Substrate specificity of the glycosyl donor for oligosaccharyl transferase. J Org Chem 66:6217–6228

    Article  PubMed  CAS  Google Scholar 

  • Titani K, Kumar S, Takio K, Ericsson LH, Wade RD, Ashida K, Walsh KA, Chopek MW, Sadler JE, Fujikawa K (1986) Amino acid sequence of human von Willebrand factor. Biochemistry 25:3171–3184

    Article  PubMed  CAS  Google Scholar 

  • Vleugels W, Schollen E, Foulquier F, Matthijs G (2009) Screening for OST deficiencies in unsolved CDG-I patients. Biochem Biophys Res Commun 390:769–774

    Article  PubMed  CAS  Google Scholar 

  • Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793

    Article  PubMed  CAS  Google Scholar 

  • Wacker M, Feldman MF, Callewaert N, Kowarik M, Clarke BR, Pohl NL, Hernandez M, Vines ED, Valvano MA, Whitfield C, Aebi M (2006) Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc Natl Acad Sci USA 103:7088–7093

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Dobberstein B (1999) Oligomeric complexes involved in translocation of proteins across the membrane of the endoplasmic reticulum. FEBS Lett 457:316–322

    Article  PubMed  CAS  Google Scholar 

  • Wilson CM, High S (2007) Ribophorin I acts as a substrate-specific facilitator of N-glycosylation. J Cell Sci 120:648–657

    Article  PubMed  CAS  Google Scholar 

  • Wilson CM, Roebuck Q, High S (2008) Ribophorin I regulates substrate delivery to the oligosaccharyltransferase core. Proc Natl Acad Sci USA 105:9534–9539

    Article  PubMed  CAS  Google Scholar 

  • Wormald MR, Dwek RA (1999) Glycoproteins: glycan presentation and protein-fold stability. Structure 7:R155–R160

    Article  PubMed  CAS  Google Scholar 

  • Yan Q, Lennarz WJ (2002) Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process. J Biol Chem 277:47692–47700

    Article  PubMed  CAS  Google Scholar 

  • Yu YH, Sabatini DD, Kreibich G (1990) Antiribophorin antibodies inhibit the targeting to the ER membrane of ribosomes containing nascent secretory polypeptides. J Cell Biol 111:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Zapun A, Jakob CA, Thomas DY, Bergeron JJ (1999) Protein folding in a specialized compartment: the endoplasmic reticulum. Structure 7:R173–R182

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Clapham DE (2009) Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci USA 106:15750–15755

    Article  PubMed  CAS  Google Scholar 

  • Zielinska DF, Gnad F, Wisniewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907

    Article  PubMed  CAS  Google Scholar 

  • Zubkov S, Lennarz WJ, Mohanty S (2004) Structural basis for the function of a minimembrane protein subunit of yeast oligosaccharyltransferase. Proc Natl Acad Sci USA 101:3821–3826

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the ETH Zürich and by grants from the Swiss National Science Foundations to RG and MA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Aebi.

Additional information

Communicated by: Dirk Lefeber

Competing interest: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohorko, E., Glockshuber, R. & Aebi, M. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis 34, 869–878 (2011). https://doi.org/10.1007/s10545-011-9337-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9337-1

Keywords

Navigation