Skip to main content
Log in

Correlation of age-specific phenylalanine levels with intellectual outcome in patients with phenylketonuria

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Patients with treated phenylketonuria (PKU) can have subtle deficits in intellect, academic skills, and executive functioning. This study evaluates the relationship between intellectual outcome and concentration/variation in blood phenylalanine (Phe) during specific developmental periods (0–6 years, 7–12 years, >12 years) in our patients with PKU. Verbal comprehension, perceptual reasoning, and processing speed were used as measures of intelligence. Data were collected from 55 patients receiving treatment at the University of Utah Metabolic Clinic. Yearly median Phe levels increased and mean number of blood Phe samples decreased as patients aged. Yearly median blood Phe from 0–6 and 7–12 years were inversely associated with perceptual reasoning abilities using linear regression. Additionally, increased blood Phe concentration negatively impacted specific areas of verbal comprehension abilities for those 0–6 years of age (p = 0.001). Variation of Phe levels around the mean (assessed as standard deviation) in each patient was associated with diagnostic (highest pretreatment) Phe levels and yearly median Phe levels (p < 0.001 for both), but did not significantly impact intelligence in our group of patients. Frequent blood Phe monitoring from 7–12 years significantly reduced the probability of yearly median Phe exceeding 360 μM (p = 0.005). Our data show that compliance with treatment in patients with PKU affects both the concentration and variation of blood Phe levels, and may have a greater impact on verbal comprehension and perceptual reasoning skills during the first 12 years of life when compared the influence beyond 12 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IQ:

Intelligence quotient

OMIM:

Online Mendelian Inheritance in Man

Phe:

Phenylalanine

PKU:

Phenylketonuria

SD:

standard deviation

WAIS:

Wechsler Adult Intelligence Scale

WISC:

Wechsler Intelligence Scale for Children

References

  • Anastasoaie V, Kurzius L, Forbes P, Waisbren S (2008) Stability of blood phenylalanine levels and IQ in children with phenylketonuria. Mol Genet Metab 95:17–20

    Article  PubMed  CAS  Google Scholar 

  • Anderson PJ, Leuzzi V (2010) White matter pathology in phenylketonuria. Mol Genet Metab 99:S3–S9

    Article  PubMed  CAS  Google Scholar 

  • Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A (2007) Are neuropsychological impairments in children with early-treated phenylketonuria related to white matter abnormalities or elevated phenylalanine levels? Dev Neuropsychol 32:645–668

    Article  PubMed  Google Scholar 

  • Antshel KM (2010) ADHD, learning, and academic performance in phenylketonuria. Mol Genet Metab 99:S52–S58

    Article  PubMed  CAS  Google Scholar 

  • Antshel KM, Waisbren SE (2003) Timing is everything: executive functions in children exposed to elevated levels of phenylalanine. Neuropsychology 17:458–468

    Article  PubMed  Google Scholar 

  • Azen C, Koch R, Friedman E, Wenz E, Fishler K (1996) Summary of findings from the United States Collaborative Study of children treated for phenylketonuria. Eur J Pediatr 155:S29–S32

    Article  PubMed  Google Scholar 

  • Berry HK, O’Grady DJ, Perlmutter LJ, Bofinger MK (1979) Intellectual development and academic achievement of children early treated for phenylketonuria. Dev Med Child Neurol 21:311–320

    Article  PubMed  CAS  Google Scholar 

  • Brumm VL, Azen C, Moats RA et al. (2004) Neuropsychological outcome of subjects participating in the PKU adult collaborative study: a preliminary review. J Inherit Metab Dis 27:549–566

    Article  PubMed  CAS  Google Scholar 

  • Burgard J (2000) Development of intelligence in early treated phenylketonuria. Eur J Pediatr 159:S74–S79

    Article  PubMed  Google Scholar 

  • Burgard P, Bremer HJ, Buhrdel P et al. (1997) Rationale for the German recommendations for phenylalanine level control in phenylketonuria. Eur J Pediatr 158:46–54

    Article  Google Scholar 

  • Burgard P, Xiaoping L, Hoffmann GF (2009) Phenylketonuria. In: Sarafoglou K, Hoffman GF, Roth KS (eds) Pediatric Endocrinology and Inborn Errors of Metabolism. McGraw Hill Companies, New York, pp 163–168

    Google Scholar 

  • Chang P, Gray RM, O’Brien LL (2000) Patterns of academic achievement among patients treated early with phenylketonuria. Eur J Pediatr 159:S96–S99

    Article  PubMed  Google Scholar 

  • Channon S, Mockler C, Lee P (2005) Executive functioning and speed of processing in phenylketonuria. Neuropsychology 19:679–686

    Article  PubMed  Google Scholar 

  • Channon S, Goodman G, Zlotowitz S, Mockler C, Lee PJ (2009) Effects of dietary management of phenylketonuria on long-term cognitive outcome. Arch Dis Child 2:213–218

    Google Scholar 

  • Cleary MA, Walter JH, Wrath JE, Jenkins JPR (1995) Magnetic resonance imaging in phenylketonuria: reversal of cerebral white matter change. J Pediatr 127:251–255

    Article  PubMed  CAS  Google Scholar 

  • de Sonneville LMJ, Huijbregts SCJ, van Spronsen FJ, Verkerk PH, Sergeant JA, Licht R (2010) Event-related potential correlates of selective processing in early- and continuously-treated children with phenylketonuria: effects of concurrent phenylalanine level and dietary control. Mol Genet Metab 99:S10–S17

    Article  PubMed  Google Scholar 

  • Dyer CA (2000) Comments on the neuropathology of phenylketonuria. Eur J Pediatr 159(Suppl 2):S107–S108

    Article  PubMed  Google Scholar 

  • Enns GM, Koch R, Brumm V, Blakely E, Suter R, Jurecki E (2010) Suboptimal outcomes in patients with PKU treated with diet alone: revisiting the evidence. Mol Genet Metab 101:99–109

    Article  PubMed  CAS  Google Scholar 

  • Feillet F, MacDonald A, Hartung D, Burton B (2010) Outcomes beyond phenylalanine: an international perspective. Mol Genet Metab 99:S79–S85

    Article  PubMed  CAS  Google Scholar 

  • Feldmann R, Denecke J, Pietsch M, Grenzebach M, Weglage J (2002) Phenylketonuria: no specific frontal lobe-dependent neuropsychological deficits in early-treated patients in comparison with diabetics. Pediatr Res 51:761–765

    PubMed  Google Scholar 

  • Fishler K, Azen C, Henderson R, Friedman EG, Koch R (1987) Psychoeducational findings among children treated for phenylketonuria. Am J Ment Defic 92:65–73

    PubMed  CAS  Google Scholar 

  • Flanagan DP, Kaufman AS (2009) Essentials of WISC-IV Assessment. Wiley, Hoboken, NJ

    Google Scholar 

  • Gassio R, Artuch R, Vilaseca MA et al. (2005a) Cognitive functions in classic phenylketonuria and mild hyperphenylalaninaemia: experience in a pediatric population. Dev Med Child Neurol 47:443–448

    Article  Google Scholar 

  • Gassio R, Fuste E, Lopez-Sala A, Artuch R, Vilaseca MA, Campistol J (2005b) School performance in early and continuously treated phenylketonuria. Pediatr Neurol 33:267–271

    Article  Google Scholar 

  • Gentile JK, Ten Hoedt AE, Bosch AM (2010) Psychosocial aspects of PKU: hidden disabilities – a review. Mol Genet Metab 99:S64–S67

    Article  PubMed  CAS  Google Scholar 

  • Gregory CO, Yu C, Singh RH (2007) Blood phenylalanine monitoring for dietary compliance among patients with phenylketonuria: comparison of methods. Genet Med 9:761–765

    Article  PubMed  CAS  Google Scholar 

  • Janzen D, Nguyen M (2010) Beyond executive function: non-executive cognitive abilities in individuals with PKU. Mol Genet Metab 99:S47–S51

    Article  PubMed  CAS  Google Scholar 

  • Kaufman AS, Lichtenberger EO (1999) Essentials of WAIS-III Assessment. JohnWiley & Sons, Inc., New York

    Google Scholar 

  • Leuzzi V, Pansini M, Sechi E (2004) Executive impairment in early-treated PKU subjects with normal mental development. J Inherit Metab Dis 27:115–125

    Article  PubMed  CAS  Google Scholar 

  • Moyle JJ, Fox AM, Arthur M, Byneveldt M, Burnett JR (2007a) Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychol Rev 17:91–101

    Article  CAS  Google Scholar 

  • Moyle JJ, Fox AM, Bynevelt M, Arthur M, Burnett JR (2007b) A neuropsychological profile of off-diet adults with phenylketonuria. J Clin Exp Neuropsychol 29:436–441

    Article  CAS  Google Scholar 

  • NIH (2000) Phenylketonuria (PKU): screening and management. NIH Consens Statement 17:1–33

    Google Scholar 

  • Rice D, Barone S (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108:S511–S533

    Article  Google Scholar 

  • Smith J, Beasley M (1989) Intelligence and behavior in children with early treated phenylketonuria. A report from the MRC/DHSS phenylketonuria register. Eur J Clin Nutr 43:S1–S5

    Google Scholar 

  • Solan HA (1987) The effects of visual-spatial and verbal skills on written and mental arithmetic. J Am Optom Assoc 58:88–94

    PubMed  CAS  Google Scholar 

  • Stemerdink BA, Kalverboer AF, Van der Meere JJ (2000) Behavior and school achievement in patients with early and continuously treated phenylketonuria. J Inherit Metab Dis 23:548–562

    Article  PubMed  CAS  Google Scholar 

  • VanZutphen KH, Packman W, Sporri L (2007) Executive functioning in children and adolescents with phenylketonuria. Clin Genet 72:13–18

    Article  PubMed  CAS  Google Scholar 

  • Vilaseca MA, Lambruschini N, Gomez-Lopez L (2010) Quality of dietary control in phenylketonuric patients and its relationship with general intelligence. Nutr Hosp 25:60–66

    PubMed  CAS  Google Scholar 

  • Waisbren S, Noel K, Fahrbach K et al. (2007) Phenylalanine blood levels and clinical outcomes in phenylketonuria: a systematic literature review and meta-analysis. Mol Genet Metab 92:63–70

    Article  PubMed  CAS  Google Scholar 

  • Walter JH, White FJ, MacDonald A (2002) How practical are recommendations for dietary control in phenylketonuria? Lancet 360:55–57

    Article  PubMed  CAS  Google Scholar 

  • Wappner R, Cho S, Kronmal RA, Schuett V, Seashore MR (1999) Management of phenylketonuria for optimal outcome: a review of guidelines for phenylketonuria management and a report of surveys of parents, patients, and clinic directors. Pediatrics 104:e68

    Article  PubMed  CAS  Google Scholar 

  • Wechsler D (2003) WISC – IV Australian Administration and Scoring Manual. Harcourt Assessment

  • Weglage J, Funders B, Wilken B et al. (1992) Psychological and social findings in adolescents with phenylketonuria. Eur J Pediatr 151:522–525

    Article  PubMed  CAS  Google Scholar 

  • Wendel U, Ullrich K, Schimdt H, Batzler U (1990) Six-year follow up of phenylalanine intakes and plasma phenylalanine concentrations. Eur J Pediatr 149(Suppl 1):S13–S16

    Article  PubMed  Google Scholar 

  • White DA, Tabor Connor L, Nardos B (2010) Age-related decline in the microstructural integrity of white matter in children with early- and continuously-treated PKU: a DTI study of corpus callosum. Mol Genet Metab 99:S41–S46

    Article  PubMed  CAS  Google Scholar 

  • Williams PE, Weiss LG, Folfhus EL (2003) WISC-IV Technical Manual #2. The Psychological Corporation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krista S. Viau.

Additional information

Communicated by: John H. Walter

Competing interest: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viau, K.S., Wengreen, H.J., Ernst, S.L. et al. Correlation of age-specific phenylalanine levels with intellectual outcome in patients with phenylketonuria. J Inherit Metab Dis 34, 963–971 (2011). https://doi.org/10.1007/s10545-011-9329-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9329-1

Keywords

Navigation