Skip to main content
Log in

Pyridoxal 5'-phosphate in cerebrospinal fluid; factors affecting concentration

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Analysis of pyridoxal 5′-phosphate (PLP) concentration in 256 cerebrospinal fluid (CSF) samples from patients with neurological symptoms showed that the variance is greater than indicated by previous studies. The age-related lower reference limit has been revised to detect inborn errors of metabolism that lead to PLP depletion without a high false positive rate: <30 days, 26 nmol/L; 30 days to 12 months, 14 nmol/L; 1-2 years, 11 nmol/L; >3 years, 10 nmol/L. Inborn errors leading to PLP concentrations below these values include pyridoxine-dependent epilepsy due to antiquitin deficiency, and molybdenum cofactor deficiency that leads to the accumulation of sulfite, a nucleophile capable of reacting with PLP. Low PLP levels were also seen in a group of children with transiently elevated urinary excretion of sulfite and/or sulfocysteine, suggesting that there may be other situations in which sulfite accumulates and inactivates PLP. There was no evidence that seizures or the anticonvulsant drugs prescribed for patients in this study led to significant lowering of CSF PLP. A small proportion of patients receiving L-dopa therapy were found to have a CSF PLP concentration below the appropriate reference range. This may have implications for monitoring and treatment. A positive correlation was seen between the CSF PLP and 5-methyl-tetrahydrofolate (5-MTHF) and tetrahydrobiopterin (BH4) concentrations. All are susceptible to attack by nucleophiles and oxygen-derived free-radicals, and CSF has relatively low concentrations of other molecules that can react with these compounds. Further studies of CSF PLP levels in a wide range of neurological diseases might lead to improved understanding of pathogenesis and possibilities for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen GF, Neergheen V, Oppenheim M et al (2010) Pyridoxal 5'-phosphate deficiency causes a loss of aromatic L-amino acid decarboxylase in patients and human neuroblastoma cells, implications for aromatic L-amino acid decarboxylase and vitamin B(6) deficiency states. J Neurochem 114(1):87–96

    PubMed  CAS  Google Scholar 

  • Apeland T, Mansoor M, Pentieva et al (2003) Fasting and Post-methionine loading concentrations of homocysteine, vitamin B2 and Vitamin B6 in patients on antiepileptic drugs. Clin Chem 49 No 6:1005-

  • Attilakos A, Papakonstantinou E, Schulpis K et al (2006) Early effect of sodium valproate and carbamazepine monotherapy on homocysteine metabolism in children with epilepsy. Epilepsy Res 71:229–232

    Article  PubMed  CAS  Google Scholar 

  • Bilski P, Li MY, Ehrenshaft M, Daub ME, Chignell CF (2000) Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem Photobiol 71:129–34

    Article  PubMed  CAS  Google Scholar 

  • Cambonie G, Bellet H, Houdon L, Vallat C, El Younsi M, Vergnes C (2001) Urinary excretion of free cysteine in critically ill neonates. Acta Paediatr 90(12):1405–10

    Article  PubMed  CAS  Google Scholar 

  • Chiang EP, Smith DE, Selhub J, Dallal G, Wang YC, Roubenoff R (2005). Inflammation causes tissue-specific depletion of vitamin B6. Arthritis Res Ther.;7(6):R1254-62

    Google Scholar 

  • Clayton PT (2006) B6 responsive disorders: a model of vitamin dependency. J inherit metab dis 29:317–326

    Article  PubMed  CAS  Google Scholar 

  • Duarte S, Sanmarti F, Gonzalez V et al (2008) Cerebrospinal fluid pterins and neurotransmitters in early severe epileptic encephalopathies. Brain Dev 30:106–111

    Article  PubMed  Google Scholar 

  • Echenne B, Roubertie L et al (2008) Monoamine metabolism study in severe, early onset epilepsy in childhood. Epileptic Disord 10(2):130–135

    PubMed  Google Scholar 

  • Evered DF (1971) L-dopa as a Vitamin B6 antagonist. Lancet 1:914

    Article  PubMed  CAS  Google Scholar 

  • Gachon F, Fonjallaz P, Damiola F, Gos P, Kodama T, Zakany J, Duboule D, Petit B, Tafti M, Schibler U (2004) The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev 18:1397–1412

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cazorla A, Quadros EV, Nascimento A et al (2008) Mitochondrial diseases associated with cerebral folate deficiency. Neurology 70(16):1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Heales S and Hyland K (1989) Determination of Quinonoid Dihydrobiopterin by High Performance Liquid Chromatography and Electrochemical Detection. J Chromato

  • Heales SJR, Blair JA, Meinschad C, Zielger I (1985) Inhibition of Monocyte Luminol-Dependent Chemiluminescence by Tetrahydrobiopterin, and the Free Radical Oxidation of Tetrahydrobiopterin, Dihydrobiopterin and Dihydroneopterin. Cell Biochem Func 6:191–195

    Article  Google Scholar 

  • Hellmann H, Mooney S (2010) Vitamin B6: a molecule for human health? Molecules 15:442–459

    Article  PubMed  CAS  Google Scholar 

  • Hyland K, Shoffner J, Heales SJ (2010) Cerebral folate deficiency. J Inherit Metab Dis 33(5):563–70

    Article  PubMed  CAS  Google Scholar 

  • Hyland K, Surtees R, Heales S, Bowron A, Howells D, Smith I (1993) Cerebrospinal fluid concentrations of pterins and metabolites of serotonin and dopamine in a pediatric reference population. Pediatr Res 34:10–14

    Article  PubMed  CAS  Google Scholar 

  • Kozlov EI, L’vova M Sh’ and Chugunov VV (1979). ‘Vitamins’ from Khimiko-Farmatsevticheskii Zhurnal

  • Meisel SB, Welford PK (1992) Seizures associated with high-dose intravenous morphine containing sodium bisulfite preservative. Ann Pharmacother 26(12):1515–7

    PubMed  CAS  Google Scholar 

  • Midttun O, Hustard S, Solheim et al (2005). Multianalyte Quantification of Vitamin B6 and B2 Species in the Nanomolar Range in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry.Clin Chem 51:7; 1206 0 1216

  • Miller JW, Selhub J, Nadeau MR et al (2003) Effect of L-dopa on plasma homocysteine in PD patients. Neurology 60:1125–1129

    PubMed  CAS  Google Scholar 

  • Mills PB, Surtees RAH, Champion MP et al (2005) Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5_-phosphate oxidase. Hum Mol Genet 14:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Mills PB, Footitt EJ, Mills KA et al (2010) Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 133(Pt 7):2148–2159

    Article  PubMed  Google Scholar 

  • Ormazabal A, Garcia-Cazorla A, Fernandez Y, Fernandez-Alvarez E, Campistol J, Artuch R (2005) HPLC with electrochemical and fluorescence detection procedures for the diagnosis of inborn errors of biogenic amines and pterins. J neurosci methods 142:153–158

    Article  PubMed  CAS  Google Scholar 

  • Ormazabal A, Oppenheim M, Serrano M et al (2008) Pyridoxal 5′-phosphate values in cerebrospinal fluid: Reference values and diagnosis of PNPO deficiency in paediatric patients. Mol Genet Metab 94:173–177

    Article  PubMed  CAS  Google Scholar 

  • Rezk BM, Haenen GRMM, van der Nigh WJF, Bast A (2003) Teterahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore. FEBS Lett 555:601–05

    Article  PubMed  CAS  Google Scholar 

  • Sandler M (1971) How does L-dopa work in parkinsonism? Lancet 1(7703):784

    Article  PubMed  CAS  Google Scholar 

  • Shin YS, Rasshofer R, Endres W (1984) Pyridoxal 5′-phosphate concentration as a marker for vitamin B6-dependent seizures in the newborn. Lancet 13:870–871

    Article  Google Scholar 

  • Smolinske SC (1992) Review of parenteral sulfite reactions. J Toxicol Clin Toxicol 30(4):597–606, Review

    Article  PubMed  CAS  Google Scholar 

  • Spector R, Johanson CE (2007) Vitamin transport and homeostasis in mammalian brain: focus on Vitamins B and E. J Neurochem 103:245

    Article  Google Scholar 

  • Steinfeld R, Grapp M, Kraetzner R, Dreha-Kulaczewski S, Helms G, Dechent P, Wevers R, Grosso S, Gärtner J (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85(3):354–63

    Article  PubMed  CAS  Google Scholar 

  • Surtees R, Mills PB, Clayton PT (2006) Inborn errors affecting Vitamin B6 metabolism. Future Medicine 1(5):615–620

    CAS  Google Scholar 

  • Vasquez-Vivar J (2009) Tetrahydrobiopterin, superoxide and vascular stress. Free Radic Biol Med 47:1108–1119

    Article  PubMed  CAS  Google Scholar 

  • Verrotti A, Pascarella R, Trotta D et al (2000) Hyperhomocysteinemia ion children treated with sodium valproate and carbamazepine. Epilepsy Res 41:253–257

    Article  PubMed  CAS  Google Scholar 

  • Vonderschitt DJ, Smith Vitols K, Huennekens FM, Scrimgeour KG (1967) Addition of bisulfite to folate and dihydrofolate. Arch Biochem Biophys 122:488–493

    Article  Google Scholar 

Download references

Competing interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma J. Footitt.

Additional information

Communicated by: K. Michael Gibson

Competing interest: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Footitt, E.J., Heales, S.J., Mills, P.B. et al. Pyridoxal 5'-phosphate in cerebrospinal fluid; factors affecting concentration. J Inherit Metab Dis 34, 529–538 (2011). https://doi.org/10.1007/s10545-011-9279-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9279-7

Keywords

Navigation