Skip to main content
Log in

Diagnosis and high incidence of hyperornithinemia-hyperammonemia-homocitrullinemia (HHH) syndrome in northern Saskatchewan

  • Research Report
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Mutations in the SLC25A15 gene, encoding the human inner mitochondrial membrane ornithine transporter, are thought to be responsible for hyperornithinemia-hyperammonemia-homocitrullinemia (HHH) syndrome, a rare autosomal recessive condition. HHH syndrome has been detected in several small, isolated communities in northern Saskatchewan (SK). To determine the incidence of HHH syndrome in these communities, a PCR method was set up to detect F188Δ, the common French-Canadian mutation. Neonatal blood spots collected from all newborns from the high risk area were genotyped for the F188Δ mutation for seven consecutive years. Using DNA analysis, we estimated that the heterozygote frequency for the mutant allele for HHH syndrome to be about 1 in 19 individuals, predicting one affected child with HHH syndrome for approximately every 1,500 individuals (1 in 1,550 live births; 1 child every 12 years) in this isolated population. The frequency for the mutant allele for HHH syndrome in this isolated community is probably the highest in the world for this rare disorder. We determined that ornithine levels, by tandem mass spectrometry, were not abnormal in newborns with F188Δ mutation, carriers and normals. Ornithine rises to abnormally high levels at some time after birth well past the time that the newborn screening blood spot is collected. The timing or the reasons for the delayed rise of ornithine in affected children with HHH syndrome have not been determined. Newborn screening for HHH Syndrome in this high risk population is only possible by detection of the mutant allele using DNA analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Aboriginal Peoples is a collective name for all of the original peoples of Canada and their descendants. The Constitution Act of 1982 specifies that the Aboriginal Peoples in Canada consist of three groups— Indians, Inuit and Métis. In Canada, many people prefer to be called First Nations or First Nations People instead of Indians (National Aboriginal Health Organization’s Terminology Guide. www.naho.ca/english/pdf/terminology_guidelines.pdf)

Abbreviations

HHH:

Hyperornithinemia-hyperammonemia-homocitrullinemia

ORNT1:

Ornithine transmembrane transporter 1

bp:

Base pair

References

  • Bodmer W (2001) Population genetics. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited disease, vol. 1. McGraw-Hill, New York, pp 299–309

    Google Scholar 

  • Brizinski P (1993) Knots in a string: an introduction to Native studies in Canada, 2nd Edn. University of Saskatchewan University Extension Press

  • Camacho JA, Obie C, Biery B et al (1999) Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 22:151–158

    Article  PubMed  CAS  Google Scholar 

  • Camacho JA, Rioseco-Camacho N, Andrade D, Porter J, Kong J (2003) Cloning and characterization of human ORNT2: a second mitochondrial ornithine transporter than can rescue a defective ORNT1 in patients with the hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, a urea cycle disorder. Mol Genet Metab 79:257–271

    Article  PubMed  CAS  Google Scholar 

  • Camacho JA, Mardach R, Rioseco-Camacho N et al (2006) Clinical and functional characterization of a human ORNT1 mutation (T32R) in the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome. Pediatr Res 60:423–429

    Article  PubMed  CAS  Google Scholar 

  • Chace DH, Hillman SL, Van Hove JL, Naylor EW (1997) Rapid diagnosis of MCAD deficiency: quantitatively analysis of octanoylcarnitine and other acylcarnitines in newborn blood spots by tandem mass spectrometry. Clin Chem 43:2106–2113

    PubMed  CAS  Google Scholar 

  • Debray F-G, Lambert M, Lemieux B et al (2008) Phenotypic variability among patients with hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome homozygous for the delF188 mutation in SLC25A15. J Med Genet 45:759–764

    Article  PubMed  CAS  Google Scholar 

  • Fecarotta S, Parenti G, Vajro P et al (2006) HHH syndrome (hyperornithinaemia, hyperammonaemia, homocitrullinuria), with fulminant hepatitis-like presentation. J Inherit Metab Dis 29:186–189

    Article  PubMed  CAS  Google Scholar 

  • Gray RG, Green A, Hall S, McKeown C (1995) Prenatal exclusion of the HHH syndrome. Prenat Diagn 15:474–476

    Article  PubMed  CAS  Google Scholar 

  • Korman SH, Kanazawa N, bu-Libdeh B, Gutman A, Tsujino S (2004) Hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome with evidence of mitochondrial dysfunction due to a novel SLC25A15 (ORNT1) gene mutation in a Palestinian family. J Neurol Sci 218:53–58

    Article  PubMed  CAS  Google Scholar 

  • Lemay JF, Lambert MA, Mitchell GA et al (1992) Hyperammonemia-hyperornithinemia-homocitrullinuria syndrome: neurologic, ophthalmologic, and neuropsychologic examination of six patients. J Pediatr 121:725–730

    Google Scholar 

  • Mhanni AA, Chan A, Collison M et al (2008) Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome (HHH) presenting with acute fulminant hepatic failure. J Pediatr Gastroenterol Nutr 46:312–315

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto T, Kanazawa N, Kato S et al (2001) Diagnosis of Japanese patients with HHH syndrome by molecular genetic analysis: a common mutation, R179X. J Hum Genet 46:260–262

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, onisi-Vici C, Bertini E, Verardo M, Santorelli FM (2001) Seven novel mutations in the ORNT1 gene (SLC25A15) in patients with hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome. Hum Mutat 18:460

    Article  PubMed  CAS  Google Scholar 

  • Saskatchewan Ministry of Health, Health Information Solutions Center (2008) Saskatchewan covered population 2008. Regina, SK

  • Shih VE, Laframboise R, Mandell R, Pichette J (1992) Neonatal form of the hyperornithinaemia, hyperammonaemia, and homocitrullinuria (HHH) syndrome and prenatal diagnosis. Prenat Diagn 12:717–723

    Article  PubMed  CAS  Google Scholar 

  • Smith L, Lambert MA, Brochu P, Jasmin G, Qureshi IA, Seidman EG (1992) Hyperornithinemia, hyperammonemia, homocitrullinuria (HHH) syndrome: presentation as acute liver disease with coagulopathy. J Pediatr Gastroenterol Nutr 15:431–436

    Article  PubMed  CAS  Google Scholar 

  • Statistics Canada (2006a) Community profiles. Accessed online: www.statcan.gc.ca

  • Statistics Canada (2006b) 2006 Aboriginal Peoples Survey. Accessed online: www.statcan.gc.ca

  • Tessa A, Fiermonte G, Onisi-Vici C et al (2009) Identification of novel mutations in the SLC25A15 gene in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome: a clinical, molecular, and functional study. Hum Mutat 30:741–748

    Article  PubMed  CAS  Google Scholar 

  • Tsujino S, Kanazawa N, Ohashi T, Eto Y, Saito T, Kira J, Yamada T (2000) Three novel mutations (G27E, insAAC, R179X) in the ORNT1 gene of Japanese patients with hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome. Ann Neurol 47:625–631

    Article  PubMed  CAS  Google Scholar 

  • Tuchman M, Knopman DS, Shih VE (1990) Episodic hyperammonemia in adult siblings with hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome. Arch Neurol 47:1134–1137

    Article  PubMed  CAS  Google Scholar 

  • Valle D, Simell O (2001) The hyperornithinemias. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited disease vol. 2. McGraw-Hill, New York, pp 1857–1895

    Google Scholar 

  • Wang T, Milam AH, Steel G, Valle D (1996) A mouse model of gyrate atrophy of the choroid and retina. Early retinal pigment epithelium damage and progressive retinal degeneration. J Clin Invest 97:2753–2762

    Article  PubMed  CAS  Google Scholar 

  • Zammarchi E, Ciani F, Pasquini E, Buonocore G, Shih VE, Donati MA (1997) Neonatal onset of hyperornithinemia-hyperammonemia-homocitrullinuria syndrome with favorable outcome. J Pediatr 131:440–443

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis C. Lehotay.

Additional information

Communicated by: James V. Leonard

References to electronic databases:

OMIM # 238970 (http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?cmd=entry&id=238970)

OMIM # 603861.0001 (http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?cmd=entry&id=603861)

Competing interest

None declared.

Appendices

Appendix A: Hardy–Weinberg Equation

Hardy-Weinberg equation

$$ {P^2} + 2pq + {q^2} = 1 $$
(1)

Using the total population number of 5,990 and a confirmed diagnosis of HHH in 4 children from the area,Frequency of HHH in the three communities, q 2, is:

$$ {q^2} = {4 \mathord{\left/{\vphantom {4 {5990 = 0.00067\left( {{1 \mathord{\left/{\vphantom {1 {0.00067 = 1492.54;\;{\hbox{i}}{\hbox{.e}}{.,}\; \sim {1}\;{\hbox{in}}\;{1500}\;{\hbox{individuals}}}}} \right.} {0.00067 = 1492.54;\;{\hbox{i}}{\hbox{.e}}{.,}\; \sim {1}\;{\hbox{in}}\;{1500}\;{\hbox{individuals}}}}} \right)}}} \right.} {5990 = 0.00067\left( {{1 \mathord{\left/{\vphantom {1 {0.00067 = 1492.54;\;{\hbox{i}}{\hbox{.e}}{.,}\; \sim {1}\;{\hbox{in}}\;{1500}\;{\hbox{individuals}}}}} \right.} {0.00067 = 1492.54;\;{\hbox{i}}{\hbox{.e}}{.,}\; \sim {1}\;{\hbox{in}}\;{1500}\;{\hbox{individuals}}}}} \right)}} $$

Frequency of the mutant allele, q, is:

$$ q = \surd 0.00067 = 0.0259\left( {{1 \mathord{\left/{\vphantom {1 {0.0259 = 38.61;\;{\hbox{i}}{\hbox{.e}}{.,}\;{1}\;{\hbox{in}}\;{38}\;{\hbox{individuals}}}}} \right.} {0.0259 = 38.61;\;{\hbox{i}}{\hbox{.e}}{.,}\;{1}\;{\hbox{in}}\;{38}\;{\hbox{individuals}}}}} \right) $$

Frequency of normal allele, p, is:

$$ p = 1 - q = 1 - 0.0259 = 0.9741\left( {97\% } \right) $$

Frequency of heterozygote, 2pq, is:

$$ 2pq = 2\left( {0.9741 \times 0.0259} \right) = 0.0504\left( {{1 \mathord{\left/{\vphantom {1 {0.0504 = 19.84;\;{\hbox{i}}{\hbox{.e}}{.,}\;{1}\;{\hbox{in}}\;{19}{.8}\;{\hbox{individuals}}}}} \right.} {0.0504 = 19.84;\;{\hbox{i}}{\hbox{.e}}{.,}\;{1}\;{\hbox{in}}\;{19}{.8}\;{\hbox{individuals}}}}} \right) $$

Based on 657 births, we should have found 33 heterozygotes (657/19.8)

The likelihood of two (2) carriers mating to produce an affected off-spring is:

$$ 2pq \times 2pq \times 0.25 = 0.000635\left( {{1 \mathord{\left/{\vphantom {1 {0.00064 = 1562.5;\;{\hbox{i}}{\hbox{.e}}{.,}\; \sim {1}\;{\hbox{in}}\;{1550}\;{\hbox{births}}}}} \right.} {0.00064 = 1562.5;\;{\hbox{i}}{\hbox{.e}}{.,}\; \sim {1}\;{\hbox{in}}\;{1550}\;{\hbox{births}}}}} \right) $$

Based on Table 1 (birth rate of 126 live births/year), one (1) child with HHH syndrome will be born every 12 years (1550 births/126 births/year).

Appendix B: test for deviation from Hardy–Weinberg equilibrium

The Hardy-Weinberg expectation (Exp) of each genotype is given by the sum of the probability of each genotype multiplied by the total. Thus, in our study, using the results from Table 2 (Results of F188Δ genotype analysis), we obtain the following:

$$ \begin{array}{*{20}{c}} {{\hbox{Exp}}\;\left( {{\hbox{wild}}\;{\hbox{genotype}}} \right) = {{\hbox{p}}^2}{\hbox{n = }}{{\left( {0.9741} \right)}^2} \times 657 = 0.9489 \times 657 = 623.43} \\{{\hbox{Exp}}\;\left( {{\hbox{carrier}}\;{\hbox{genotype}}} \right) = {\hbox{2pqn = 2}} \times \left( {0.9741 \times 0.0259 \times 657} \right) = 2 \times 16.58 = 33.16} \\{{\hbox{Exp}}\;\left( {{\hbox{mutant}}\;{\hbox{genotype}}} \right){ = }{{\hbox{q}}^2}{\hbox{n = }}{{\left( {0.0259} \right)}^2} \times 657 = 0.44} \\\end{array} $$

Pearson’s chi-square (X 2) test, at 1 degree of freedom (number of genotype−number of alleles = 3 − 2 = 1) and 5% significance level is given by the following:

$$ \begin{array}{*{20}{c}} {{X^2}} & { = {{{{\left[ {{\hbox{number}}\;{\hbox{of}}\;{\hbox{wild}}\;{\hbox{genotype}}\;{ - }\;{\hbox{Exp}}\left( {{\hbox{wild}}\;{\hbox{genotype}}} \right)} \right]}^2}} \mathord{\left/{\vphantom {{{{\left[ {{\hbox{number}}\;{\hbox{of}}\;{\hbox{wild}}\;{\hbox{genotype}}\;{ - }\;{\hbox{Exp}}\left( {{\hbox{wild}}\;{\hbox{genotype}}} \right)} \right]}^2}} {{\hbox{Exp}}\left( {{\hbox{wild}}\;{\hbox{genotype}}} \right)}}} \right.} {{\hbox{Exp}}\left( {{\hbox{wild}}\;{\hbox{genotype}}} \right)}}} \\{} & + \\{} & {{{{{\left[ {{\hbox{number}}\;{\hbox{of}}\;{\hbox{carriers}}\;{ - }\;{\hbox{Exp}}\left( {{\hbox{carrier}}\;{\hbox{genotype}}} \right)} \right]}^2}} \mathord{\left/{\vphantom {{{{\left[ {{\hbox{number}}\;{\hbox{of}}\;{\hbox{carriers}}\;{ - }\;{\hbox{Exp}}\left( {{\hbox{carrier}}\;{\hbox{genotype}}} \right)} \right]}^2}} {{\hbox{Exp}}\left( {{\hbox{carrier}}\;{\hbox{genotype}}} \right)}}} \right.} {{\hbox{Exp}}\left( {{\hbox{carrier}}\;{\hbox{genotype}}} \right)}}} \\{} & + \\{} & {{{{{\left[ {{\hbox{number}}\;{\hbox{of}}\;{\hbox{mutants}}\;{ - }\;{\hbox{Exp}}\left( {{\hbox{mutant}}\;{\hbox{genotype}}} \right)} \right]}^2}} \mathord{\left/{\vphantom {{{{\left[ {{\hbox{number}}\;{\hbox{of}}\;{\hbox{mutants}}\;{ - }\;{\hbox{Exp}}\left( {{\hbox{mutant}}\;{\hbox{genotype}}} \right)} \right]}^2}} {{\hbox{Exp}}\left( {{\hbox{mutant}}\;{\hbox{genotype}}} \right)}}} \right.} {{\hbox{Exp}}\left( {{\hbox{mutant}}\;{\hbox{genotype}}} \right)}}} \\\end{array} $$

Thus, for our study group,

$$ \begin{array}{*{20}{c}} {{X^2}} & { = {{{{\left[ {628 - 623.43} \right]}^2}} \mathord{\left/{\vphantom {{{{\left[ {628 - 623.43} \right]}^2}} {{{623.43 + {{\left[ {25 - 33.16} \right]}^2}} \mathord{\left/{\vphantom {{623.43 + {{\left[ {25 - 33.16} \right]}^2}} {{{33.16 + {{\left[ {4 - 0.44} \right]}^2}} \mathord{\left/{\vphantom {{33.16 + {{\left[ {4 - 0.44} \right]}^2}} {0.44}}} \right.} {0.44}}}}} \right.} {{{33.16 + {{\left[ {4 - 0.44} \right]}^2}} \mathord{\left/{\vphantom {{33.16 + {{\left[ {4 - 0.44} \right]}^2}} {0.44}}} \right.} {0.44}}}}}}} \right.} {{{623.43 + {{\left[ {25 - 33.16} \right]}^2}} \mathord{\left/{\vphantom {{623.43 + {{\left[ {25 - 33.16} \right]}^2}} {{{33.16 + {{\left[ {4 - 0.44} \right]}^2}} \mathord{\left/{\vphantom {{33.16 + {{\left[ {4 - 0.44} \right]}^2}} {0.44}}} \right.} {0.44}}}}} \right.} {{{33.16 + {{\left[ {4 - 0.44} \right]}^2}} \mathord{\left/{\vphantom {{33.16 + {{\left[ {4 - 0.44} \right]}^2}} {0.44}}} \right.} {0.44}}}}}}} \\{} & { = \left( {{{20.88} \mathord{\left/{\vphantom {{20.88} {623.43}}} \right.} {623.43}}} \right) + \left( {{{66.56} \mathord{\left/{\vphantom {{66.56} {33.16}}} \right.} {33.16}}} \right) + \left( {{{12.67} \mathord{\left/{\vphantom {{12.67} {0.44}}} \right.} {0.44}}} \right)} \\{} & { = 0.033 + 2.01 + 28.79} \\{} & { = 30.83} \\\end{array} $$

The 5% significant level for 1 degree of freedom is 3.84 (from X 2 table). Since the calculated X 2 value (30.83) is greater than this value (30.83 vs 3.84), the null hypothesis (the population is in Hardy-Weinberg equilibrium) is rejected.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokoro, A.A.H., Lepage, J., Antonishyn, N. et al. Diagnosis and high incidence of hyperornithinemia-hyperammonemia-homocitrullinemia (HHH) syndrome in northern Saskatchewan. J Inherit Metab Dis 33 (Suppl 3), 275–281 (2010). https://doi.org/10.1007/s10545-010-9148-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9148-9

Keywords

Navigation