Skip to main content
Log in

Complete deficiency of methylenetetrahydrofolate reductase in mice is associated with impaired retinal function and variable mortality, hematological profiles, and reproductive outcomes

  • Homocysteine and B-Vitamin Metabolism
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Severe deficiency of methylenetetrahydrofolate reductase (MTHFR) with homocystinuria can result in early demise or later-onset neurological impairment, including developmental delay, motor dysfunction, and seizures. We previously characterized BALB/c Mthfr −/−mice as a model for this disorder and have recently backcrossed the disrupted allele onto the C57Bl/6 background to examine the variable phenotypes in MTHFR deficiency. Compared with BALB/c Mthfr −/−mice, C57Bl/6 Mthfr −/−mice have enhanced survival rates (81% vs 26.5%). Four-day-old BALB/c mutant pups had lower body, brain, and spleen weights relative to their wild-type counterparts compared with C57Bl/6 mutants. Pregnant BALB/c Mthfr +/−mice had increased resorptions and embryonic delays compared with wild-type littermates, whereas these outcomes in C57Bl/6 c Mthfr +/−mice were similar to those of wild-type C57Bl/6 mice. BALB/c-mutant pups had altered hematological profiles (higher hematocrit, hemoglobin, and white blood cell counts, with lower platelet counts) compared with C57Bl/6 mutants. Mutants of both strains had similar degrees of hepatic steatosis, hepatic activity of betaine:homocysteine methyltransferase, and altered cerebellar histology. Electroretinograms (ERG) in C57Bl/6 Mthfr −/−mice revealed decreased amplitude of scotopic and photopic waves in 6-week-old mice, with normalized ERGs at 13 weeks. Plasma homocysteine was modestly higher in C57Bl/6 compared with BALB/c mice. Our results emphasize the variable presentation of MTHFR deficiency in different genetic backgrounds and suggest that plasma homocysteine is not a predictor of severity. In addition, our novel findings of decreased spleen weights, thrombocytopenia, and impaired retinal function warrant investigation in patients with severe MTHFR deficiency or other forms of homocystinuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

BHMT:

betaine:homocysteine methyltransferase

EGL:

external granular layer

ERG:

electroretinogram

MTHFR:

methylenetetrahydrofolate reductase

OFFHBC:

OFF-hyperpolarizing bipolar cells

SEM:

standard error of the mean

SOP:

sum of oscillatory potentials

tHcy:

total plasma homocysteine

References

  • Belcastro V, Striano P, Caccamo D, Costa C, Pisani LR, Trombetta CJ, Maddaloni A, Ciampa C, Reccia R, Ientile R, Striano S, Calabresi P, Pisani F (2008) Hyperhomocysteinemia and retinal vascular changes in patients with epilepsy. Epilepsy Res 81:86–89

    Article  CAS  PubMed  Google Scholar 

  • Cayouette M, Behn D, Sendtner M, Lachapelle P, Gravel C (1998) Intraocular gene transfer of ciliary neurotrophic factor prevents death and increases responsiveness of rod photoreceptors in the retinal degeneration slow mouse. J Neurosci 18:9282–9293

    CAS  PubMed  Google Scholar 

  • Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS, Bottiglieri T, Bagley P, Selhub J, Rudnicki MA, James SJ, Rozen R (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10:433–443

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Schwahn BC, Wu Q, He X, Rozen R (2005) Postnatal cerebellar defects in mice deficient in methylenetetrahydrofolate reductase. Int J Dev Neurosci 23:465–474

    Article  CAS  PubMed  Google Scholar 

  • Dorfman AL, Polosa A, Joly S, Chemtob S, Lachapelle P (2009) Functional and structural changes resulting from strain differences in the rat model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 50:2436–2450

    Article  PubMed  Google Scholar 

  • Durand P, Fortin LJ, Lussier-Cacan S, Davignon J, Blache D (1996) Hyperhomocysteinemia induced by folic acid deficiency and methionine load-applications of a modified HPLC method. Clin Chim Acta 252:83–93

    Article  CAS  PubMed  Google Scholar 

  • Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  • Garrow TA (1996) Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J Biol Chem 271:22831–22838

    CAS  PubMed  Google Scholar 

  • Ghandour H, Chen Z, Selhub J, Rozen R (2004) Mice deficient in methylenetetrahydrofolate reductase exhibit tissue-specific distribution of folates. J Nutr 134:2975–2978

    CAS  PubMed  Google Scholar 

  • Goyette P, Frosst P, Rosenblatt DS, Rozen R (1995) Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. Am J Hum Genet 56:1052–1059

    CAS  PubMed  Google Scholar 

  • Goyette P, Christensen B, Rosenblatt DS, Rozen R (1996) Severe and mild mutations in cis for the methylenetetrahydrofolate reductase (MTHFR) gene, and description of five novel mutations in MTHFR. Am J Hum Genet 59:1268–1275

    CAS  PubMed  Google Scholar 

  • Haworth JC, Dilling LA, Surtees RA, Seargeant LE, Lue-Shing H, Cooper BA, Rosenblatt DS (1993) Symptomatic and asymptomatic methylenetetrahydrofolate reductase deficiency in two adult brothers. Am J Med Genet 45:572–576

    Article  CAS  PubMed  Google Scholar 

  • Kelly TL, Neaga OR, Schwahn BC, Rozen R, Trasler JM (2005) Infertility in 5, 10-methylenetetrahydrofolate reductase (MTHFR)-deficient male mice is partially alleviated by lifetime dietary betaine supplementation. Biol Reprod 72:667–677

    Article  CAS  PubMed  Google Scholar 

  • Knock E, Deng L, Wu Q, Lawrance AK, Wang XL, Rozen R (2008) Strain differences in mice highlight the role of DNA damage in neoplasia induced by low dietary folate. J Nutr 138:653–658

    CAS  PubMed  Google Scholar 

  • Lattanzio R, Sampietro F, Ramoni A, Fattorini A, Brancato R, D'Angelo A (2006) Moderate hyperhomocysteinemia and early-onset central retinal vein occlusion. Retina 26:65–70

    Article  PubMed  Google Scholar 

  • Lee I, Lee H, Kim JM, Chae EH, Kim SJ, Chang N (2007) Short-term hyperhomocysteinemia-induced oxidative stress activates retinal glial cells and increases vascular endothelial growth factor expression in rat retina. Biosci Biotechnol Biochem 71:1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Li D, Pickell L, Liu Y, Wu Q, Cohn JS, Rozen R (2005) Maternal methylenetetrahydrofolate reductase deficiency and low dietary folate lead to adverse reproductive outcomes and congenital heart defects in mice. Am J Clin Nutr 82:188–195

    CAS  PubMed  Google Scholar 

  • Li D, Karp N, Wu Q, Wang XL, Melnyk S, James SJ, Rozen R (2008) Mefolinate (5-methyltetrahydrofolate), but not folic acid, decreases mortality in an animal model of severe methylenetetrahydrofolate reductase deficiency. J Inherit Metab Dis 31:403–411

    Article  PubMed  Google Scholar 

  • Lipton SA, Kim WK, Choi YB, Kumar S, D'Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 94:5923–5928

    Article  CAS  PubMed  Google Scholar 

  • Miller NR (1996) The optic nerve. Curr Opin Neurol 9:5–15

    Article  CAS  PubMed  Google Scholar 

  • Mohan IV, Jagroop IA, Mikhailidis DP, Stansby GP (2008) Homocysteine activates platelets in vitro. Clin Appl Thromb Hemost 14:8–18

    Article  CAS  PubMed  Google Scholar 

  • Moore P, El-sherbeny A, Roon P, Schoenlein PV, Ganapathy V, Smith SB (2001) Apoptotic cell death in the mouse retinal ganglion cell layer is induced in vivo by the excitatory amino acid homocysteine. Exp Eye Res 73:45–57

    Article  CAS  PubMed  Google Scholar 

  • Pickell L, Li D, Brown K, Mikael LG, Wang XL, Wu Q, Luo L, Jerome-Majewska L, Rozen R (2009) Methylenetetrahydrofolate reductase deficiency and low dietary folate increase embryonic delay and placental abnormalities in mice. Birth Defects Res A Clin Mol Teratol 85:531–541

    Article  CAS  PubMed  Google Scholar 

  • Poloschek CM, Fowler B, Unsold R, Lorenz B (2005) Disturbed visual system function in methionine synthase deficiency. Graefes Arch Clin Exp Ophthalmol 243:497–500

    Article  CAS  PubMed  Google Scholar 

  • Quere I, Gris JC, Dauzat M (2005) Homocysteine and venous thrombosis. Semin Vasc Med 5:183–189

    Article  PubMed  Google Scholar 

  • Racine J, Behn D, Lachapelle P (2008) Structural and functional maturation of the retina of the albino Hartley guinea pig. Doc Ophthalmol 117:13–26

    Article  PubMed  Google Scholar 

  • Reish O, Townsend D, Berry SA, Tsai MY, King RA (1995) Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 57:127–132

    CAS  PubMed  Google Scholar 

  • Rongioletti M, Baldassini M, Papa F, Capoluongo E, Rocca B, Cristofaro RD, Salvati G, Larciprete G, Stroppolo A, Angelucci PA, Cirese E, Ameglio F (2005) Homocysteinemia is inversely correlated with platelet count and directly correlated with sE-and sP-selectin levels in females homozygous for C677T methylenetetrahydrofolate reductase. Platelets 16:185–190

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt D, Fowler B (2006) Disorders of cobalamin and folate transport and metabolism. In: Fernandes J, Saudubray J-M, van den Berghe G, Walter J (eds) Inborn metabolic diseases. Springer, Berlin, pp 341–356

    Chapter  Google Scholar 

  • Schwahn B, Rozen R (2001) Polymorphisms in the methylenetetrahydrofolate reductase gene: clinical consequences. Am J Pharmacogenomics 1:189–201

    Article  CAS  PubMed  Google Scholar 

  • Schwahn BC, Chen Z, Laryea MD, Wendel U, Lussier-Cacan S, Genest J Jr, Mar MH, Zeisel SH, Castro C, Garrow T, Rozen R (2003) Homocysteine-betaine interactions in a murine model of 5, 10-methylenetetrahydrofolate reductase deficiency. Faseb J 17:512–514

    CAS  PubMed  Google Scholar 

  • Schwahn BC, Laryea MD, Chen Z, Melnyk S, Pogribny I, Garrow T, James SJ, Rozen R (2004) Betaine rescue of an animal model with methylenetetrahydrofolate reductase deficiency. Biochem J 382:831–840

    Article  CAS  PubMed  Google Scholar 

  • Sibani S, Christensen B, O'Ferrall E, Saadi I, Hiou-Tim F, Rosenblatt DS, Rozen R (2000) Characterization of six novel mutations in the methylenetetrahydrofolate reductase (MTHFR) gene in patients with homocystinuria. Hum Mutat 15:280–287

    Article  CAS  PubMed  Google Scholar 

  • Smith SB, Kekuda R, Gu X, Chancy C, Conway SJ, Ganapathy V (1999) Expression of folate receptor alpha in the mammalian retinol pigmented epithelium and retina. Invest Ophthalmol Vis Sci 40:840–848

    CAS  PubMed  Google Scholar 

  • Sola-Visner M, Saxonhouse MA, Brown RE (2008) Neonatal thrombocytopenia: what we do and don't know. Early Hum Dev 84:499–506

    Article  PubMed  Google Scholar 

  • Steegers-Theunissen RP, Van Iersel CA, Peer PG, Nelen WL, Steegers EA (2004) Hyperhomocysteinemia, pregnancy complications, and the timing of investigation. Obstet Gynecol 104:336–343

    Article  CAS  PubMed  Google Scholar 

  • Trasler J, Deng L, Melnyk S, Pogribny I, Hiou-Tim F, Sibani S, Oakes C, Li E, James SJ, Rozen R (2003) Impact of Dnmt1 deficiency, with and without low folate diets, on tumor numbers and DNA methylation in Min mice. Carcinogenesis 24:39–45

    Article  CAS  PubMed  Google Scholar 

  • Tsina EK, Marsden DL, Hansen RM, Fulton AB (2005) Maculopathy and retinal degeneration in cobalamin C methylmalonic aciduria and homocystinuria. Arch Ophthalmol 123:1143–1146

    Article  PubMed  Google Scholar 

  • Viktorov IV, Aleksandrova OP, Alekseeva NY (2006) Homocysteine toxicity in organotypic cultures of rat retina. Bull Exp Biol Med 141:471–474

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Canadian Institutes of Health Research. AKL was the recipient of a Montreal Children’s Hospital Research Institute Studentship. We are grateful to Timothy A. Garrow (University of Illinois) for carrying out BHMT activity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Rozen.

Additional information

Communicated by: Viktor Kozich

Competing interest: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrance, A.K., Racine, J., Deng, L. et al. Complete deficiency of methylenetetrahydrofolate reductase in mice is associated with impaired retinal function and variable mortality, hematological profiles, and reproductive outcomes. J Inherit Metab Dis 34, 147–157 (2011). https://doi.org/10.1007/s10545-010-9127-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9127-1

Keywords

Navigation