Skip to main content
Log in

Oligodendrocyte development and myelinogenesis are not impaired by high concentrations of phenylalanine or its metabolites

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Phenylketonuria (PKU) is a metabolic genetic disease characterized by deficient phenylalanine hydroxylase (PAH) enzymatic activity. Brain hypomyelination has been reported in untreated patients, but its mechanism remains unclear. We therefore investigated the influence of phenylalanine (Phe), phenylpyruvate (PP), and phenylacetate (PA) on oligodendrocytes. We fisrt showed in a mouse model of PKU that the number of oligodendrocytes is not different in corpus callosum sections from adult mutants or from control brains. Then, using enriched oligodendroglial cultures, we detected no cytotoxic effect of high concentrations of Phe, PP, or PA. Finally, we analyzed the impact of Phe, PP, and PA on the myelination process in myelinating cocultures using both an in vitro index of myelination, based on activation of the myelin basic protein (MBP) promoter, and the direct quantification of myelin sheaths by both optical measurement and a bioinformatics method. None of these parameters was affected by the increased levels of Phe or its derivatives. Taken together, our data demonstrate that high levels of Phe, such as in PKU, are unlikely to directly induce brain hypomyelination, suggesting involvement of alternative mechanisms in this myelination defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PKU:

Phenylketonuria

PAH:

Phenylalanine hydroxylase

Phe:

Phenylalanine

Tyr:

Tyrosine

PP:

Phenylpyruvate

PA:

Phenylacetate

LNAA:

Large neutral amino acids

OPC:

Oligodendrocyte progenitor cells

SVZ:

Subventricular zone

References

  • Ahring K, Belanger-Quintana A, Dokoupil K et al (2009) Dietary management practices in phenylketonuria across European centres. Clin Nutr 28(3):231–236

    Article  CAS  PubMed  Google Scholar 

  • Barbin G, Aigrot MS, Charles P et al (2004) Axonal cell-adhesion molecule L1 in CNS myelination. Neuron Glia Biol 1(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927

    CAS  PubMed  Google Scholar 

  • Bottenstein J, Hayashi I, Hutchings S et al (1979) The growth of cells in serum-free hormone-supplemented media. Methods Enzymol 58:94–109

    Article  CAS  PubMed  Google Scholar 

  • Cabib S, Pascucci T, Ventura R, Romano V, Puglisi-Allegra S (2003) The behavioral profile of severe mental retardation in a genetic mouse model of phenylketonuria. Behav Genet 33(3):301–310

    Article  PubMed  Google Scholar 

  • Charles P, Hernandez MP, Stankoff B et al (2000) Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci U S A 97(13):7585–7590

    Article  CAS  PubMed  Google Scholar 

  • Demerens C, Stankoff B, Zalc B, Lubetzki C (1999) Eliprodil stimulates CNS myelination: new prospects for multiple sclerosis? Neurology 52(2):346–350

    CAS  PubMed  Google Scholar 

  • Dyer CA (2000) Comments on the neuropathology of phenylketonuria. Eur J Pediatr 159(Suppl 2):S107–S108

    Article  PubMed  Google Scholar 

  • Dyer CA, Kendler A, Philibotte T, Gardiner P, Cruz J, Levy HL (1996) Evidence for central nervous system glial cell plasticity in phenylketonuria. J Neuropathol Exp Neurol 55(7):795–814

    Article  CAS  PubMed  Google Scholar 

  • Gow A, Friedrich VL Jr, Lazzarini RA (1992) Myelin basic protein gene contains separate enhancers for oligodendrocyte and Schwann cell expression. J Cell Biol 119(3):605–616

    Article  CAS  PubMed  Google Scholar 

  • Hoeksma M, Reijngoud DJ, Pruim J, de Valk HW, Paans AM, van Spronsen FJ (2009) Phenylketonuria: high plasma phenylalanine decreases cerebral protein synthesis. Mol Genet Metab 96(4):177–182

    Article  CAS  PubMed  Google Scholar 

  • Horster F, Schwab MA, Sauer SW et al (2006) Phenylalanine reduces synaptic density in mixed cortical cultures from mice. Pediatr Res 59(4 Pt 1):544–548

    Article  PubMed  Google Scholar 

  • Hughes JV, Johnson TC (1976) The effects of phenylalanine on amino acid metabolism and protein synthesis in brain cells in vitro. J Neurochem 26(6):1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Huttenlocher PR (2000) The neuropathology of phenylketonuria: human and animal studies. Eur J Pediatr 159(Suppl 2):S102–S106

    Article  PubMed  Google Scholar 

  • Joseph B, Dyer CA (2003) Relationship between myelin production and dopamine synthesis in the PKU mouse brain. J Neurochem 86(3):615–626

    Article  CAS  PubMed  Google Scholar 

  • Kaufman S (1989) An evaluation of the possible neurotoxicity of metabolites of phenylalanine. J Pediatr 114(5):895–900

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Michals-Matalon K, Bhatia G et al (2007) Double blind placebo control trial of large neutral amino acids in treatment of PKU: effect on blood phenylalanine. J Inherit Metab Dis 30(2):153–158

    Article  CAS  PubMed  Google Scholar 

  • McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902

    Article  CAS  PubMed  Google Scholar 

  • McDonald JD, Charlton CK (1997) Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics 39(3):402–405

    Article  CAS  PubMed  Google Scholar 

  • Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67(6):451–467

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (1998) Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 23(5):635–644

    Article  CAS  PubMed  Google Scholar 

  • Pascucci T, Ventura R, Puglisi-Allegra S, Cabib S (2002) Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. NeuroReport 13(18):2561–2564

    Article  CAS  PubMed  Google Scholar 

  • Pey AL, Desviat LR, Gamez A, Ugarte M, Perez B (2003) Phenylketonuria: genotype-phenotype correlations based on expression analysis of structural and functional mutations in PAH. Hum Mutat 21(4):370–378

    Article  CAS  PubMed  Google Scholar 

  • Rocha JC, Martel F (2009) Large neutral amino acids supplementation in phenylketonuric patients. J Inherit Metab Dis 32(4):472–480

    Article  CAS  PubMed  Google Scholar 

  • Sarkissian CN, Boulais DM, McDonald JD, Scriver CR (2000a) A heteroallelic mutant mouse model: a new orthologue for human hyperphenylalaninemia. Mol Genet Metab 69(3):188–194

    Article  CAS  PubMed  Google Scholar 

  • Sarkissian CN, Scriver CR, Mamer OA (2000b) Measurement of phenyllactate, phenylacetate, and phenylpyruvate by negative ion chemical ionization-gas chromatography/mass spectrometry in brain of mouse genetic models of phenylketonuria and non-phenylketonuria hyperphenylalaninemia. Anal Biochem 280(2):242–249

    Article  CAS  PubMed  Google Scholar 

  • Schindeler S, Ghosh-Jerath S, Thompson S et al (2007) The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Mol Genet Metab 91(1):48–54

    Article  CAS  PubMed  Google Scholar 

  • Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D, (eds); Childs B, Kinzler KW, Vogelstein B (associated eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1667–1724

    Google Scholar 

  • Shefer S, Tint GS, Jean-Guillaume D et al (2000) Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme a reductase activity and forebrain pathology in the PKU mouse? J Neurosci Res 61(5):549–563

    Article  CAS  PubMed  Google Scholar 

  • Silberberg DH (1967) Phenylketonuria metabolites in cerebellum culture morphology. Arch Neurol 17(5):524–529

    CAS  PubMed  Google Scholar 

  • Smith CB, Kang J (2000) Cerebral protein synthesis in a genetic mouse model of phenylketonuria. Proc Natl Acad Sci U S A 97(20):11014–11019

    Article  CAS  PubMed  Google Scholar 

  • Sommer I, Schachner M (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol 83(2):311–327

    Article  CAS  PubMed  Google Scholar 

  • Stankoff B, Aigrot MS, Noel F, Wattilliaux A, Zalc B, Lubetzki C (2002) Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules. J Neurosci 22(21):9221–9227

    CAS  PubMed  Google Scholar 

  • Surtees R, Blau N (2000) The neurochemistry of phenylketonuria. Eur J Pediatr 159(Suppl 2):S109–S113

    Article  CAS  PubMed  Google Scholar 

  • van Spronsen FJ, Hoeksma M, Reijngoud DJ (2009) Brain dysfunction in phenylketonuria: is phenylalanine toxicity the only possible cause? J Inherit Metab Dis 32(1):46–51

    Article  PubMed  Google Scholar 

  • Williams RA, Mamotte CD, Burnett JR (2008) Phenylketonuria: an inborn error of phenylalanine metabolism. Clin Biochem Rev 29(1):31–41

    PubMed  Google Scholar 

  • Wu C, Schulte J, Sepp KJ, Littleton JT, Hong P (Submitted) Robust Neurite Detection and Automatic Morphological Analysis of Optical Microscopy Neuron Cell Culture Images in High-Content Screening. Neuroinformatics

  • Yamamura T, Konola JT, Wekerle H, Lees MB (1991) Monoclonal antibodies against myelin proteolipid protein: identification and characterization of two major determinants. J Neurochem 57(5):1671–1680

    Article  CAS  PubMed  Google Scholar 

  • Zagreda L, Goodman J, Druin DP, McDonald D, Diamond A (1999) Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation. J Neurosci 19(14):6175–6182

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Imaging Platform, the SPF Animal Facility, and the Neurosciences Department from GIGA-Research for their experimental help. We also thank Olympus Belgium N.V. for providing the Cell^R system.

Competing interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Bours.

Additional information

Communicated by: Bruce A. Barshop

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoemans, R., Aigrot, MS., Wu, C. et al. Oligodendrocyte development and myelinogenesis are not impaired by high concentrations of phenylalanine or its metabolites. J Inherit Metab Dis 33, 113–120 (2010). https://doi.org/10.1007/s10545-010-9052-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9052-3

Keywords

Navigation