Skip to main content
Log in

Metabolic programming: Role of nutrition in the immediate postnatal life

  • SSIEM Symposium 2008
  • Published:
Journal of Inherited Metabolic Disease

Summary

Although genes and dietary habits are generally implicated in the aetiology of the prevailing obesity epidemic, the steep increase in the incidence of obesity within a relatively short span of time suggests that other contributing factors may be at play. The role of nutritional experience during the very early periods of life is increasingly being recognized as contributing to growth and metabolic changes in later life. Epidemiological data and studies from animal models have established a strong correlation between an aberrant intrauterine environment and adult-onset disorders in offspring. The nutritional experience in the immediate postnatal life is another independent factor contributing to the development of metabolic diseases in adulthood. Although studies on the small-litter rat model have shown that overnourishment during the suckling period results in adult-onset metabolic disorders, our studies have shown that a change in the quality of calories—specifically, increased carbohydrate intake by newborn rat pups in the immediate postnatal period—results in chronic hyperinsulinaemia and adult-onset obesity. Several functional alterations in islets and in the hypothalamic energy homeostatic mechanism appear to support this phenotype. Remarkably, female rats that underwent the high-carbohydrate dietary modification as neonates spontaneously transmitted the obesity phenotype to their offspring, thus establishing a vicious generational effect. The high-carbohydrate diet-fed rat model has particular relevance in the context of the current human infant feeding practices: reduction in breast feeding and increase in formula feeding for infants, accompanied by early introduction of carbohydrate-enriched baby foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-HC rats:

offspring of HC female rats

α 2aAR:

alpha2a-adrenergic receptor

α-MSH:

α-melanocortin-stimulating hormone

AgRP:

agouti-related polypeptide

ANS:

autonomic nervous system

ARC:

arcuate nucleus

BMI:

body mass index

CART:

cocaine and amphetamine related transcript

CRF:

corticotrophin-releasing factor

GAL:

galanin

HC rats:

rat pups raised on the HC milk formula

HC:

high-carbohydrate milk formula

IR-β :

insulin receptor β

MC3R:

muscarinic-type 3 receptor

MC4R:

muscarinic-type 4 receptor

NPY:

neuropeptide Y

Ob-RB:

leptin receptor long form

POMC:

pro-opiomelanocortin

SL:

small litter

References

  • Aalinkeel R, Srinivasan M, Kalhan SC, Laychock SG, Patel MS (1999) A dietary intervention (high carbohydrate) during the neonatal period causes islet dysfunction in rats. Am J Physiol 277: E1061–E1069.

    PubMed  CAS  Google Scholar 

  • Aalinkeel R, Srinivasan M, Song F, Patel MS (2001) Programming into adulthood of islet adaptations induced by early nutritional intervention in the rat. Am J Physiol Endocrinol Metab 281: E640–E648.

    PubMed  CAS  Google Scholar 

  • Arenz S, Ruckerl R, Koletzko B, von Kries R (2004) Breast-feeding and childhood obesity—a systematic review. Int J Obes Relat Metab Disord 28: 1247–1256. doi:10.1038/sj.ijo.0802758.

    Article  PubMed  CAS  Google Scholar 

  • Baker JL, Michaelsen KF, Rasmussen KM, Sorensen TI (2004) Maternal prepregnant body mass index, duration of breastfeeding, and timing of complementary food introduction areassociated with infant weight gain. Am J Clin Nutr 80: 1579–1588.

    PubMed  CAS  Google Scholar 

  • Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, Law C (2005) Being big or growing fast: systemic review of size and growth in infancy and later obesity. Br Med J 331: 929. doi:10.1136/bmj.38586.411273.E0.

    Article  Google Scholar 

  • Barker DJ (1995) The fetal and infant origins of disease. Eur J Clin Invest 25: 457–463. doi:10.1111/j.1365-2362.1995.tb01730.x.

    Article  PubMed  CAS  Google Scholar 

  • Bouret SG, Simerly RB (2004) Minireview: Leptin and the development of hypothalamic feeding circuits. Endocrinol 145: 2621–2626. doi:10.1210/en.2004-0231.

    Article  CAS  Google Scholar 

  • Davidowa H, Plagemann A (2001) Inhibition by insulin of hypothalamic VMN neurons in rats overweight due to postnatal overfeeding. Neuroreport 12: 3201–3204. doi:10.1097/00001756-200110290-00012.

    Article  PubMed  CAS  Google Scholar 

  • Davidowa H, Plagemann A (2007) Insulin resistance of hypothalamic arcuate neurons in neonatally overfed rats. Neuroreport 18: 521–524. doi:10.1097/WNR.0b013e32805dfb93.

    Article  PubMed  CAS  Google Scholar 

  • Davidowa H, Li Y, Plagemann A (2003) Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur J Neurosci 18: 613–621. doi:10.1046/j.1460-9568.2003.02789.x.

    Article  PubMed  Google Scholar 

  • Davidowa H, Li Y, Plagemann A (2005) The main effect of cocaine- and amphetamine-regulated transcript (CART) peptide on hypothalamic neuronal activity depends on the nutritional state of rats. Neuro Endocrinol Lett 26: 29–34.

    PubMed  CAS  Google Scholar 

  • Dewey KG (1998) Growth characteristics of breast-fed compared to formula-fed infants. Biol Neonate 74: 94–105. doi:10.1159/000014016.

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrog S, Harder T, Stolaczyk E, et al (2004) Cross-fostering to diabetic rat dams affects early development of mediobasal hypothalamic nuclei regulating food intake, body weight, and metabolism. J Nutr 134: 648–654.

    PubMed  CAS  Google Scholar 

  • Fernandez-Twinn DS, Ozanne SE (2006) Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav 88: 234–243. doi:10.1016/j.physbeh.2006.05.039.

    Article  PubMed  CAS  Google Scholar 

  • Gallou-Kabani C, Junien C (2005) Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 54: 1899–1906. doi:10.2337/diabetes.54.7.1899.

    Article  PubMed  CAS  Google Scholar 

  • Gallou-Kabani C, Vige A, Gross MS, Junien C (2007) Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond. Clin Chem Lab Med 45: 321–327. doi:10.1515/CCLM.2007.081.

    Article  PubMed  CAS  Google Scholar 

  • Garofano A, Czernichow P, Breant B (1997) In utero undernutrition impairs rat beta–cell development. Diabetologia 40:1231–1234. doi:10.1007/s001250050812.

    Article  PubMed  CAS  Google Scholar 

  • Garofano A, Czernichow P, Breant B (1998) Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia 41: 1114–1120. doi:10.1007/s001250051038.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA (2007) Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res 61: 5R–10R. doi:10.1203/pdr.0b013e318045bedb.

    Article  PubMed  Google Scholar 

  • Grove KL, Smith MS (2003) Ontogeny of the hypothalamic neuropeptide Y system. Physiol Behav 79: 47–63. doi:10.1016/S0031-9384(03)00104-5.

    Article  CAS  Google Scholar 

  • Guo F, Jen KL (1995) High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol Behav 57: 681–686. doi:10.1016/0031-9384(94)00342-4.

    Article  PubMed  CAS  Google Scholar 

  • Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60: 5–20. doi:10.1093/bmb/60.1.5.

    Article  PubMed  CAS  Google Scholar 

  • Hall WG (1975) Weaning and growth of artificially reared rats. Science 190: 1313–1315. doi:10.1126/science.1198116.

    Article  PubMed  CAS  Google Scholar 

  • Haney PM, Estrin CR, Caliendo A, Patel MS (1986) Precocious induction of hepatic glucokinase and malic enzyme in artificially reared rat pups fed a high-carbohydrate diet. Arch Biochem Biophys 244: 787–794. doi:10.1016/0003-9861(86)90647-8.

    Article  PubMed  CAS  Google Scholar 

  • Harder T, Bergmann R, Kallischnigg G, Plagemann A (2005) Duration of breastfeeding and risk of overweight: a meta-analysis. Am J Epidemiol 162: 397–403. doi:10.1093/aje/kwi222.

    Article  PubMed  Google Scholar 

  • Hiremagalur B, Johanning GL, Kalhan SC, Patel MS (1992) Alterations in hepatic lipogenic capacity in rat pups artificially reared on a milk-substitute formula high in carbohydrate or medium-chain triacylglycerides. J Nutr Biochem 3: 474. doi:10.1016/0955-2863(92)90006-5.

    Article  CAS  Google Scholar 

  • Hiremagalur BK, Vadlamudi S, Johanning GL, Patel MS (1993) Long-term effects of feeding high carbohydrate diet in pre-weaning period by gastrostomy: a new rat model for obesity. Int J Obes Relat Metab Disord 17: 495–502.

    PubMed  CAS  Google Scholar 

  • Jenness R (1979) The composition of human milk. Semin Perinatol 3: 225–239.

    PubMed  CAS  Google Scholar 

  • Kaung HL (1994) Growth dynamics of pancreatic islet cell populations during fetal and neonatal development of the rat. Dev Dyn 200: 163–175.

    PubMed  CAS  Google Scholar 

  • Kramer MS, Guo T, Platt RW, et al (2004) Feeding effects on growth during infancy. J Pediatr 145: 600–605. doi:10.1016/j.jpeds.2004.06.069.

    Article  PubMed  Google Scholar 

  • Lawlor DA, Riddoch CJ, Page AS, et al (2005) Infant feeding and components of the metabolic syndrome: findings from the European Youth Heart Study. Arch Dis Child 90: 582–588. doi:10.1136/adc.2004.055335.

    Article  PubMed  CAS  Google Scholar 

  • Levin BE, Magnan C, Migrenne S, Chua SC, Jr., Dunn-Meynell AA (2005) F-DIO obesity-prone rat is insulin resistant before obesity onset. Am J Physiol Regul Integr Comp Physiol 289: R704–R711. doi:10.1152/ajpregu.00216.2005.

    PubMed  CAS  Google Scholar 

  • Lucas A (1991) Programming by early nutrition in man. Ciba Found Symp 156: 38–50.

    PubMed  CAS  Google Scholar 

  • Lucas A (1998) Programming by early nutrition: an experimental approach. J Nutr 128: 401S–406S.

    PubMed  CAS  Google Scholar 

  • Lucas A (2000) Programming not metabolic imprinting. Am J Clin Nutr 71: 602.

    PubMed  CAS  Google Scholar 

  • McCance RA (1962) Food, growth, and time. Lancet 280(7258): 671–676. doi:10.1016/S0140-6736(62)90499-3.

    Article  Google Scholar 

  • McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome:prediction, plasticity and programming. Physiol Rev 85: 571–633. doi:10.1152/physrev.00053.2003.

    Article  PubMed  CAS  Google Scholar 

  • Mitrani P, Srinivasan M, Dodds C, Patel MS (2007a) Role of the autonomic nervous system in the development of hyperinsulinemia by high-carbohydrate formula feeding toneonatal rats. Am J Physiol Endocrinol Metab 292: E1069–E1078. doi:10.1152/ajpendo.00477.2006.

    Article  CAS  Google Scholar 

  • Mitrani P, Srinivasan M, Dodds C, Patel MS (2007b) Autonomic involvement in the permanent metabolic programming of hyperinsulinemia in the high–carbohydrate rat model. Am J Physiol Endocrinol Metab 292: E1364–E1377. doi:10.1152/ajpendo.00672.2006.

    Article  CAS  Google Scholar 

  • Moura AS, Franco de Sa CC, Cruz HG, Costa CL (2002) Malnutrition during lactation as a metabolic imprinting factor inducing the feeding pattern of offspring rats when adults. The role of insulin and leptin. Braz J Med Biol Res 35: 617–622.

    PubMed  CAS  Google Scholar 

  • Nathanielsz PW (2006) Animal models that eludicate basic principles of the develpmental origins of adult diseases. Inst Lab Anim Res J 47: 73–82.

    CAS  Google Scholar 

  • Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM (2006) Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295: 1549–1555. doi:10.1001/jama.295.13.1549.

    Article  PubMed  CAS  Google Scholar 

  • Owen CG, Martin RM, Whincup PH, Davey-Smith G, Gillman MW, Cook DG (2005a) The effect of breastfeeding on mean body mass index throughout life: a quantitative review of published and unpublished observational evidence. Am J Clin Nutr 82: 1298–1307.

    CAS  Google Scholar 

  • Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG (2005b) Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics 115: 1367–1377. doi:10.1542/peds.2004-1176.

    Article  Google Scholar 

  • Ozanne SE, Hales CN (1999) The long-term consequences of intra-uterine protein malnutrition for glucose metabolism. Proc Nutr Soc 58: 615–619.

    PubMed  CAS  Google Scholar 

  • Patel MS, Srinivasan M (2006) Metabolic programming as a consequence of the nutritional environment during fetal and the immediate postnatal periods. In P. Thureen and W. Hay, eds. Neonatal Nutrition and Metabolism, 2nd edn. Cambridge: Cambridge University Press, 76–90.

    Google Scholar 

  • Patel MS, Srinivasan M, Laychock SG (2005) Nutrient-induced maternal hyperinsulinemia and metabolic programming in the progeny. Nestle Nutr Workshop Ser Pediatr Program 55:137–147, discussion 147–151.

    Article  PubMed  Google Scholar 

  • Petrik J, Srinivasan M, Aalinkeel R, et al (2001) A long-term high-carbohydrate diet causes an altered ontogeny of pancreatic islets of Langerhans in the neonatal rat. Pediatr Res 49: 84–92. doi:10.1203/00006450-200101000-00019.

    Article  PubMed  CAS  Google Scholar 

  • Petry CJ, Ozanne SE, Wang CL, Hales CN (1997) Early protein restriction and obesity independently induce hypertension in 1-year-old rats. Clin Sci (Lond) 93: 147–152.

    CAS  Google Scholar 

  • Plagemann A (2004) ‘Fetal programming’ and ‘functional teratogenesis’: on epigenetic mechanisms and prevention of perinatally acquired lasting health risks. J Perinat Med 32: 297–305. doi:10.1515/JPM.2004.055.

    Article  PubMed  CAS  Google Scholar 

  • Plagemann A (2005) Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav 86: 661–668. doi:10.1016/j.physbeh.2005.08.065.

    Article  PubMed  CAS  Google Scholar 

  • Plagemann A (2006a) Perinatal nutrition and hormone-dependent programming of food intake. Horm Res 65(Supplement 3): 83–89. doi:10.1159/000091511.

    Article  PubMed  CAS  Google Scholar 

  • Plagemann A (2006b) Early life determinants of adult health and diseases. J Perinat Med 34:256–257. doi:10.1515/JPM.2006.050.

    Article  Google Scholar 

  • Reilly JJ, Methven E, McDowell ZC, et al (2003) Health consequences of obesity. Arch Dis Child 88: 748–752. doi:10.1136/adc.88.9.748.

    Article  PubMed  CAS  Google Scholar 

  • Singhal A, Lucas A (2004) Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet 363: 1642–1645. doi:10.1016/S0140-6736(04)16210-7.

    Article  PubMed  Google Scholar 

  • Smith J (2007) The contribution of infant food marketing to the obesogenic environment in Australia. Breastfeed Rev 15: 23–35.

    PubMed  Google Scholar 

  • Song F, Srinivasan M, Aalinkeel R, Patel MS (2001) Use of a cDNA array for the identification of genes induced in islets of suckling rats by a high-carbohydrate nutritional intervention. Diabetes 50: 2053–2060. doi:10.2337/diabetes.50.9.2053.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan M, Aalinkeel R, Song F, Lee B, Laychock SG, Patel MS (2000) Adaptive changes in insulin secretion by islets from neonatal rats raised on a high-carbohydrate formula. Am J Physiol Endocrinol Metab 279: E1347–E1357.

    PubMed  CAS  Google Scholar 

  • Srinivasan M, Song F, Aalinkeel R, Patel MS (2001) Molecular adaptations in islets from neonatal rats reared artificially ona high carbohydrate milk formula. J Nutr Biochem 12: 575–584. doi:10.1016/S0955-2863(01)00176-0.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan M, Laychock SG, Hill DJ, Patel MS (2003a) Neonatal nutrition: metabolic programming of pancreatic islets and obesity. Exp Biol Med (Maywood) 228: 15–23.

    CAS  Google Scholar 

  • Srinivasan M, Aalinkeel R, Song F, Patel MS (2003b) Programming of islet functions in the progeny of hyperinsulinemic/obese rats. Diabetes 52: 984–990. doi:10.2337/diabetes.52.4.984.

    Article  CAS  Google Scholar 

  • Srinivasan M, Aalinkeel R, Song F, et al (2006) Maternal hyperinsulinemia predisposes rat fetuses for hyperinsulinemia, and adult-onset obesity and maternal mild food restriction reverses this phenotype. Am J Physiol Endocrinol Metab 290: E129–E134. doi:10.1152/ajpendo.00248.2005.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan M, Patel, MS (2008a) Metabolic programming in the immediate postnatal period. Trends Endocrinol Metab 19: 146–152. doi:10.1016/j.tem.2007.12.001.

    Article  CAS  Google Scholar 

  • Srinivasan M, Mitrani P, Sadhanandan G, et al (2008b) A high-carbohydrate diet in the immediate postnatal life of rats induces adaptations predisposing to adult-onset obesity. J Endocrinol 197: 565–574. doi:10.1677/JOE-08-0021.

    Article  CAS  Google Scholar 

  • Srinivasan M, Dodds D, Ghanim H, et al (2008c) Maternal obesity and fetal programming: effects of a high carbohydrate nutritional modification in the immediate postnatal life of female rats. Am J Physiol Endocrinol Metab 295(4): E895–E903. doi:10.1152/ajpendo.90460.2008.

    Article  CAS  Google Scholar 

  • Stettler N, Zemel BS, Kumanyika S, Stallings VA (2002) Infant weight gain and childhood overweight status in a multicenter cohort study. Pediatrics 109: 194–199. doi:10.1542/peds.109.2.194.

    Article  PubMed  Google Scholar 

  • Taylor PD, McConnell J, Khan IY, et al (2005) Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Physiol Regul Integr Comp Physiol 288: R134–R139. doi:10.1152/ajpregu.00355.2004.

    PubMed  CAS  Google Scholar 

  • Vadlamudi S, Hiremagalur BK, Tao L, et al (1993) Long-term effects on pancreatic function of feeding a HC formula torats during the preweaning period. Am J Physiol 265: E565–E571.

    PubMed  CAS  Google Scholar 

  • Vadlamudi S, Kalhan SC, Patel MS (1995) Persistence of metabolic consequences in the progeny of rats fed a HC formula in their early postnatal life. Am J Physiol 269: E731–E738.

    PubMed  CAS  Google Scholar 

  • Van Assche FA, Aerts L (1985) Long-term effect of diabetes and pregnancy in the rat. Diabetes 34(Supplement 2) 116–118.

    PubMed  Google Scholar 

  • Van Assche FA, Holemans K, Aerts L (2001) Long-term consequences for offspring of diabetes during pregnancy. Br Med Bull 60: 173–182. doi:10.1093/bmb/60.1.173.

    Article  PubMed  Google Scholar 

  • Weaver IC, Cervoni N, Champagne FA, et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7: 847–854. doi:10.1038/nn1276.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Institutes of Health Grant DK61518.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Patel.

Additional information

Communicating editor: Georg Hoffmann

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, M.S., Srinivasan, M. & Laychock, S.G. Metabolic programming: Role of nutrition in the immediate postnatal life. J Inherit Metab Dis 32, 218–228 (2009). https://doi.org/10.1007/s10545-008-1033-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-1033-4

Keywords

Navigation