Skip to main content
Log in

The phenotypic spectrum of paediatric neurotransmitter diseases and infantile parkinsonism

  • Symposium on Neurotransmitter Disorders
  • Published:
Journal of Inherited Metabolic Disease

Summary

Paediatric neurotransmitter diseases are a group of inherited disorders attributable to a disturbance of neurotransmitter metabolism. The monoamines, catecholamines and serotonin, also called biogenic amines, are neurotransmitters with multiple roles including psychomotor function, hormone secretion, cardiovascular, respiratory and gastrointestinal control, sleep mechanisms, body temperature and pain. Given the multiple functions of monoamines, disorders of their metabolism comprise a wide spectrum of manifestations, with motor dysfunction being the most prominent clinical feature. The severity of the clinical manifestations ranges from mild to severe. Patients with severe and intermediate phenotypes may present with infantile parkinsonism that differs in a number of aspects from the parkinsonism in nigrostriatal degeneration. Analysis of monoamine metabolites and pterins in spinal fluid assists in the diagnosis of these disorders. Treatment options include tetrahydrobiopterin supplementation, l-dopa, 5-hydroxytryptophan, and medications that potentiate monoamine transmission. Response to treatment is variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

5-HIAA:

5-hydroxyindoleacetic acid

5-HTP:

5-hydroxytryptophan

6PTP:

6-pyruvoyltetrahydropterin

AADC:

aromatic l-amino-acid decarboxylase

BH4 :

tetrahydrobiopterin

COMT:

catechol O-methyltransferase

DA:

dopamine

DBH:

dopamine β-hydroxylase

DHPR:

dihydropteridine reductase

GTPCH:

GTP cyclohydrolase

5HT:

serotonin

HVA:

homovanillic acid

MAO:

monoamine oxidase

MHPG:

3-methoxy-4-hydroxyphenylglycol

NH2 TP:

dihydroneopterin triphosphate

PCD:

pterin 4α-carbinolamine dehydratase

PNMT:

phenylethanolamine N-methyltransferase

PTPS:

6-pyruvoyltetrahydropterin synthase

qBH2:

quinonoid dihydrobiopterin

SR:

sepiapterin reductase

References

  • Bernard G, Shevell MI (2008) Channelopathies: a review. Pediatr Neurol 38: 73–85. doi:10.1016/j.pediatrneurol.2007.09.007.

    Article  PubMed  Google Scholar 

  • Bezard E, Brotchie JM, Gross CE (2001) Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2: 577–588. doi:10.1038/35086062.

    Article  PubMed  CAS  Google Scholar 

  • Blau N, Thöny B, Cotton RGH, Hyland K (2001a) Disorders of tetrahydrobiopterin and related biogenic amines. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 1725–1776.

    Google Scholar 

  • Blau N, Bonafé L, Thöny B (2001b) Tetrahydrobiopterin deficiencies without hyperphenylalaninemia: diagnosis and genetics of dopa-responsive dystonia and sepiapterin reductase deficiency. Mol Genet Metab 74: 172–185. doi:10.1006/mgme.2001.3213.

    Article  PubMed  CAS  Google Scholar 

  • Burlina AB, Burlina AP, Hyland K, Bonafe L, Blau N (2001) Autistic syndrome and aromatic l-amino acid decarboxylase deficiency. J Inherit Metab Dis 24(Supplement 1): 34.

    Google Scholar 

  • Chang YT, Sharma R, Marsh JL, et al (2004) Levodopa-responsive aromatic l-amino acid decarboxylase deficiency. Ann Neurol 55: 435–438. doi:10.1002/ana.20055.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zhuang X (2003) Transgenic mouse models of dopamine deficiency. Ann Neurol 54(Supplement 6): S91–102. doi:10.1002/ana.10655.

    Article  PubMed  CAS  Google Scholar 

  • Collins FA, Murphy DL, Reiss AL, et al (1992) Clinical, biochemical, and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAOA and MAOB) genes. Am J Med Genet 42: 127–134. doi:10.1002/ajmg.1320420126.

    Article  PubMed  CAS  Google Scholar 

  • Coni RJ, Cowger M, Rosenblum EL (1991) Paroxysmal tremor and orofacial dyskinesia secondary to a biopterin synthesis defect. Neurology 41: 930–932.

    PubMed  Google Scholar 

  • de Rijk-Van Andel JF, Gabreëls FJ, et al (2000) l-Dopa-responsive infantile hypokinetic rigid parkinsonism due to tyrosine hydroxylase deficiency. Neurology 55(12): 1926–1928.

    PubMed  CAS  Google Scholar 

  • Diepold K, Schütz B, Rostasy K, et al (2005) Levodopa-responsive infantile parkinsonism due to a novel mutation in the tyrosine hydroxylase gene and exacerbation by viral infections. Mov Disord 20: 764–767. doi:10.1002/mds.20416.

    Article  PubMed  Google Scholar 

  • Giovanniello T, Leuzzi V, Carducci C, et al (2007) Tyrosine hydroxylase deficiency presenting with a biphasic clinical course. Neuropediatrics 38: 213–215. doi:10.1055/s-2007-991151.

    Article  PubMed  CAS  Google Scholar 

  • Grattan-Smith PJ, Wevers RA, Steenbergen-Spanjers GC, Fung VS, Earl J, Wilcken B (2002) Tyrosine hydroxylase deficiency: clinical manifestations of catecholamine insufficiency in infancy. Mov Disord 17: 354–359. doi:10.1002/mds.10095.

    Article  PubMed  Google Scholar 

  • Haavik J, Blau N, Thöny B (2008) Mutations in human monoamine-related neurotransmitter pathway genes. Hum Mutat 29: 891–902. doi:10.1002/humu.20700.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann GF, Assmann B, Bräutigam C, et al (2003) Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Ann Neurol 54(Supplement 6): S56–65. doi:10.1002/ana.10632.

    Article  PubMed  CAS  Google Scholar 

  • Horvath GA, Stockler-Ipsiroglu SG, Salvarinova-Zivkovic R, et al (2008) Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms. Mol Genet Metab 94: 127–131. doi:10.1016/j.ymgme.2008.01.003.

    Article  PubMed  CAS  Google Scholar 

  • Hyland K (2008) Clinical utility of monoamine neurotransmitter metabolite analysis in cerebrospinal fluid. Clin Chem 54: 633–641. doi:10.1373/clinchem.2007.099986.

    Article  PubMed  CAS  Google Scholar 

  • Jankovik J (2007) Pathophysiology and assessment of parkinsonian symptoms and signs. In: Pahwa R, Lyons K, Koller WC, eds. Handbook of Parkison’s disease. New York: Taylor & Francis, 49–75.

    Google Scholar 

  • Kandel ER, Siegelbaum SA, Schwartz JH (2000) Elementary interactions between neurons: synaptic transmission. In: Kandel ER, Schwartz JH, Jessel TM, eds. Principles of Neural Science. New York: McGraw-Hill, 123–134.

    Google Scholar 

  • Kim DS, Szczypka MS, Palmiter RD (2000) Dopamine-deficient mice are hypersensitive to dopamine receptor agonists. J Neurosci 20: 4405–4413.

    PubMed  CAS  Google Scholar 

  • Leigh RJ, Foley JM, Remler BF, Civil RH (1987) Oculogyric crisis: a syndrome of thought disorder and ocular deviation. Ann Neurol 22: 13–17. doi:10.1002/ana.410220106.

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Harvey JA, Friedman E, Simansky K, Murphy EH (1997) New evidence for neurotransmitter influences on brain development. Trends Neurosci 20: 269–274. doi:10.1016/S0166-2236(96)01028-4.

    Article  PubMed  CAS  Google Scholar 

  • Lüdecke B, Knappskog PM, Clayton PT, et al (1996) Recessively inherited l-DOPA-responsive parkinsonism in infancy caused by a point mutation (L205P) in the tyrosine hydroxylase gene. Hum Mol Genet 5: 1023–1028. doi:10.1093/hmg/5.7.1023.

    Article  PubMed  Google Scholar 

  • Pearl PL, Taylor JL, Trzcinski S, Sokohl A (2007) The pediatric neurotransmitter disorders. J Child Neurol 22: 606–616. doi:10.1177/0883073807302619.

    Article  PubMed  Google Scholar 

  • Pons R, Ford B, Chiriboga CA, et al (2004) Aromatic l-amino acid decarboxylase deficiency: clinical features, treatment, and prognosis. Neurology 62: 1058–1065.

    PubMed  CAS  Google Scholar 

  • Sedel F, Saudubray JM, Roze E, Agid Y, Vidailhet M (2008) Movement disorders and inborn errors of metabolism in adults: a diagnostic approach. J Inherit Metab Dis 31: 308–318. doi:10.1007/s10545-008-0854-5.

    Article  PubMed  CAS  Google Scholar 

  • Segawa M (2000) Hereditary progressive dystonia with marked diurnal fluctuation. Brain Dev 22(Supplemental 1): S65–80. doi:10.1016/S0387-7604(00)00148-0.

    Article  PubMed  Google Scholar 

  • Segawa M, Nomura Y, Nishiyama N (2003) Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol 54(Supplement 6): S32–45. doi:10.1002/ana.10630.

    Article  PubMed  CAS  Google Scholar 

  • Senard JM, Rouet P (2006) Dopamine beta-hydroxylase deficiency. Orphanet J Rare Dis 1: 7. doi:10.1186/1750-1172-1-7.

    Article  PubMed  Google Scholar 

  • Spada M, Ferraris S, Ferrero GB, et al (1996) Monitoring treatment in tetrahydrobiopterin deficiency by serum prolactin. J Inherit Metab Dis 19: 231–233. doi:10.1007/BF01799437.

    Article  PubMed  CAS  Google Scholar 

  • Swoboda KJ, Hyland K, Goldstein DS, et al (1999) Clinical and therapeutic observations in aromatic l-amino acid decarboxylase deficiency. Neurology 53: 1205–1211.

    PubMed  CAS  Google Scholar 

  • Thanvi B, Lo N, Robinson T (2007) Levodopa-induced dyskinesia in Parkinson’s disease: clinical features, pathogenesis, prevention and treatment. Postgrad Med J 83: 384–388. doi:10.1136/pgmj.2006.054759.

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel LP, Luiten B, Smeitink JA, et al (1998) A common point mutation in the tyrosine hydroxylase gene in autosomal recessive l-DOPA-responsive dystonia in the Dutch population. Hum Genet 102: 644–646. doi:10.1007/s004390050756.

    Article  PubMed  Google Scholar 

  • Voog L, Eriksson T (1992) Is rat brain content of large neutral amino acids (LNAAs) a reflection of plasma LNAA concentrations? J Neural Transm Gen Sect 87: 133–143. doi:10.1007/BF01245015.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The Symposium was supported in part by R13 NS 60363 from the NIH NINDS and Office of Rare Diseases (ORD), and the Johns Hopkins University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pons.

Additional information

Communicating editor: Michael Gibson

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pons, R. The phenotypic spectrum of paediatric neurotransmitter diseases and infantile parkinsonism. J Inherit Metab Dis 32, 321–332 (2009). https://doi.org/10.1007/s10545-008-1007-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-1007-6

Keywords

Navigation