Skip to main content
Log in

Biochemical characterization of mutant phenylalanine hydroxylase enzymes and correlation with clinical presentation in hyperphenylalaninaemic patients

  • BH4 and PKU
  • Published:
Journal of Inherited Metabolic Disease

Summary

The biochemical properties of mutant phenylalanine hydroxylase (PAH) enzymes and clinical characteristics of hyperphenylalaninaemic patients who bear these mutant enzymes were investigated. Biochemical characterization of mutant PAH enzymes p.D143G, p.R155H, p.L348V, p.R408W and p.P416Q included determination of specific activity, substrate activation, V max, K m for (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin (BH4), K d for BH4, and protein stabilization by BH4. Clinical data from 22 patients either homozygous, functionally hemizygous, or compound heterozygous for the mutant enzymes of interest were correlated with biochemical parameters of the mutant enzymes. The p.L348V and p.P416Q enzymes retain significant catalytic activity yet were observed in classic and moderate PKU patients. Biochemical studies demonstrated that BH4 rectified the stability defects in p.L348V and p.P416Q; additionally, patients with these variants responded to BH4 therapy. The p.R155H mutant displayed low PAH activity and decreased apparent affinity for l-Phe yet was observed in mild hyperphenylalaninaemia. The p.R155H mutant does not display kinetic instability, as it is stabilized by BH4 similarly to wild-type PAH; thus the residual activity is available under physiological conditions. The p.R408W enzyme is dysfunctional in nearly all biochemical parameters, as evidenced by disease severity in homozygous and hemizygous patients. Biochemical assessment of mutant PAH proteins, especially parameters involving interaction with BH4 that impact protein folding, appear useful in clinical correlation. As additional patients and mutant proteins are assessed, the utility of this approach will become apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BH4 :

(6R)-l-erythro-5,6,7,8-tetrahydrobiopterin

Phe:

phenylalanine

Tyr:

tyrosine

Trp:

tryptophan

CD:

circular dichroism

PAH:

phenylalanine hydroxylase

PKU:

phenylketonuria

MHP:

mild hyperphenylalaninaemia

wt:

wild-type

DTT:

dithiothreitol

References

  • Aguado C, Perez B, Ugarte M, Desviat LR (2006) Analysis of the effect of tetrahydrobiopterin on PAH gene expression in hepatoma cells. FEBS Lett 580(7): 1697–1701. doi:10.1016/j.febslet.2006.02.005.

    Article  PubMed  CAS  Google Scholar 

  • Aguado C, Perez B, Garcia MJ, et al (2007) BH4 responsiveness associated to a PKU mutation with decreased binding affinity for the cofactor. Clin Chim Acta 380(1–2): 8–12. doi:10.1016/j.cca.2007.02.034.

    Article  PubMed  CAS  Google Scholar 

  • Bjørgo E, de Carvalho RM, Flatmark T (2001) A comparison of kinetic and regulatory properties of the tetrameric and dimeric forms of wild-type and Thr427→pro mutant human phenylalanine hydroxylase: contribution of the flexible hinge region Asp425-Gln429 to the tetramerization and cooperative substrate binding. Eur J Biochem 268(4): 997–1005. doi:10.1046/j.1432-1327.2001.01958.x.

    Article  PubMed  Google Scholar 

  • Bjørgo E, Knappskog PM, Martínez A, Stevens RC, Flatmark T (1998) Partial characterization and three-dimensional-structural localization of eight mutations in exon 7 of the human phenylalanine hydroxylase gene associated with phenylketonuria. Eur J Biochem 257(1): 1–10. doi:10.1046/j.1432-1327.1998.2570001.x.

    Article  PubMed  Google Scholar 

  • Blau N, Erlandsen H (2004) The metabolic and molecular bases of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Mol Genet Metab 82(2): 101–111. doi:10.1016/j.ymgme.2004.03.006.

    Article  PubMed  CAS  Google Scholar 

  • Chace DH, Kalas TA, Naylor EW (2003) Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem 49(11): 1797–1817. doi:10.1373/clinchem.2003.022178.

    Article  PubMed  CAS  Google Scholar 

  • Cremades N, Bueno M, Toja M, Sancho J (2005) Towards a new therapeutic target: Helicobacter pylori flavodoxin. Biophys Chem 115(2–3): 267–276. doi:10.1016/j.bpc.2004.12.045.

    Article  PubMed  CAS  Google Scholar 

  • Dobrowolski SF, Ellingson C, Coyne T, et al (2007) Mutations in the phenylalanine hydroxylase gene identified in 95 patients with phenylketonuria using novel systems of mutation scanning and specific genotyping based upon thermal melt profiles. Mol Genet Metab 91(3): 218–227. doi:10.1016/j.ymgme.2007.03.010.

    Article  PubMed  CAS  Google Scholar 

  • Døskeland AP, Døskeland SO, Øgreid D, Flatmark T (1984) The effect of ligands of phenylalanine 4-monooxygenase on the cAMP-dependent phosphorylation of the enzyme. J Biol Chem 259: 11242–11248.

    PubMed  Google Scholar 

  • Eiken HG, Knappskog PM, Apold J, Flatmark (1996) PKU mutation G46S is associated with increased aggregation and degradation of the phenylalanine hydroxylase enzyme. Hum Mutat 7(3): 228–238. doi:10.1002/(SICI)1098-1004(1996)7:3<228::AID-HUMU7>3.0.CO;2-6.

    PubMed  CAS  Google Scholar 

  • Erlandsen H, Pey AL, Gamez A, et al (2004) Correction of kinetic and stability defects by tetrahydrobiopterin in phenylketonuria patients with certain phenylalanine hydroxylase mutations. Proc Natl Acad Sci U S A 101: 16903–16908. doi:10.1073/pnas.0407256101.

    Article  PubMed  CAS  Google Scholar 

  • Erlandsen H, Stevens RC (1999) The structural basis of phenylketonuria. Molec Genet Metab 68(2): 103–125.

    Article  Google Scholar 

  • Gámez A, Pérez B, Ugarte M, Desviat LR (2000) Expression analysis of phenylketonuria mutations. Effect on folding and stability of the phenylalanine hydroxylase protein. J Biol Chem 275(38): 29737–29742. doi:10.1074/jbc.M003231200.

    Article  PubMed  Google Scholar 

  • Gjetting T, Petersen M, Guldberg P, Guttler F (2001) In vitro expression of 34 naturally occurring mutant variants of phenylalanine hydroxylase: correlation with metabolic phenotypes and susceptibility toward protein aggregation. Mol Genet Metab 72(2): 132–143. doi:10.1006/mgme.2000.3118.

    Article  PubMed  CAS  Google Scholar 

  • Guldberg P, Rey F, Zschocke J, et al (1998) A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet 63(1): 71–79. doi:10.1086/301920.

    Article  PubMed  CAS  Google Scholar 

  • Guthrie R, Susi A (1963) A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32: 338–343.

    PubMed  CAS  Google Scholar 

  • Guttler F, Guldberg P (2000) Mutation analysis anticipates dietary requirements in phenylketonuria. Eur J Pediatr 159(Suppl 2): S150–S153. doi:10.1007/PL00014381.

    Article  PubMed  CAS  Google Scholar 

  • Heath EM, O’Brien DP, Banas R, Naylor EW, Dobrowolski S (1999) Optimization of an automated DNA purification protocol for neonatal screening. Arch Pathol Lab Med 123(12): 1154–1160.

    PubMed  CAS  Google Scholar 

  • Kaufman S (1993) The phenylalanine hydroxylating system. Adv Enzymol Relat Areas Mol Biol 67: 77–264. doi:10.1002/9780470123133.ch2.

    Article  PubMed  CAS  Google Scholar 

  • Kayaalp E, Treacy E, Waters PJ, et al (1997) Human phenylalanine hydroxylase mutations and hyperphenylalaninemia phenotypes: a metanalysis of genotype–phenotype correlations. Am J Hum Genet 61(6): 1309–1317. doi:10.1086/301638.

    Article  PubMed  CAS  Google Scholar 

  • Knappskog PM, Eiken HG, Martínez A, et al (1996a) PKU mutation (D143G) associated with an apparent high residual enzyme activity: expression of a kinetic variant form of phenylalanine hydroxylase in three different systems. Hum Mutat 8: 236–246. doi:10.1002/(SICI)1098-1004(1996)8:3<236::AID-HUMU7>3.0.CO;2-7.

    Article  PubMed  CAS  Google Scholar 

  • Knappskog PM, Flatmark T, Aarden JM, Haavik J, Martínez A (1996b) Structure/function relationships in human phenylalanine hydroxylase. Effect of terminal deletions on the oligomerization, activation and cooperativity of substrate binding to the enzyme. Eur J Biochem 242(3): 813–821. doi:10.1111/j.1432-1033.1996.0813r.x.

    Article  PubMed  CAS  Google Scholar 

  • Knappskog PM, Haavik J (1995) Tryptophan fluorescence of human phenylalanine hydroxylase produced in Escherichia coli. Biochemistry 34: 11790–11799. doi:10.1021/bi00037a017.

    Article  PubMed  CAS  Google Scholar 

  • Koch R, Burton B, Hoganson G, et al (2002) Phenylketonuria in adulthood: a collaborative study. J Inherit Metab Dis 25(5): 333–346. doi:10.1023/A:1020158631102.

    Article  PubMed  CAS  Google Scholar 

  • Kure S, Hou DC, Ohura T, et al (1999) Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr 135(3): 375–378. doi:10.1016/S0022-3476(99)70138-1.

    Article  PubMed  CAS  Google Scholar 

  • Kure S, Sato K, Fujii K, et al (2004) Wild-type phenylalanine hydroxylase activity is enhanced by tetrahydrobiopterin supplementation in vivo: an implication for therapeutic basis of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Mol Genet Metab 83(1–2): 150–156. doi:10.1016/j.ymgme.2004.06.016.

    Article  PubMed  CAS  Google Scholar 

  • Levy HL (1999) Phenylketonuria: old disease, new approach to treatment. Proc Natl Acad Sci U S A 96(5): 1811–1813. doi:10.1073/pnas.96.5.1811.

    Article  PubMed  CAS  Google Scholar 

  • Martínez A, Knappskog PM, Olafsdottir S, et al (1995) Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases. Isolation and characterization of the wild-type enzyme. Biochem J 306: 589–597.

    PubMed  Google Scholar 

  • Mitnaul LJ, Shiman R (1995) Coordinate regulation of tetrahydrobiopterin turnover and phenylalanine hydroxylase activity in rat liver cells. Proc Natl Acad Sci U S A 92(3): 885–889. doi:10.1073/pnas.92.3.885.

    Article  PubMed  CAS  Google Scholar 

  • Muhlemann O, Eberle AB, Stalder L, Zamudio Orozco R (2008) Recognition and elimination of nonsense mRNA. Biochim Biophys Acta 1779(9): 538–549.

    Google Scholar 

  • Okano Y, Takatori K, Kudo S, et al (2007) Effects of tetrahydrobiopterin and phenylalanine on in vivo human phenylalanine hydroxylase by phenylalanine breath test. Mol Genet Metab 92(4): 308–314. doi:10.1016/j.ymgme.2007.07.013.

    Article  PubMed  CAS  Google Scholar 

  • Pey AL, Desviat LR, Gamez A, Ugarte M, Perez B (2003) Phenylketonuria: genotype–phenotype correlations based on expression analysis of structural and functional mutations in PAH. Hum Mutat 21(4): 370–378. doi:10.1002/humu.10198.

    Article  PubMed  CAS  Google Scholar 

  • Pey AL, Martinez A (2005) The activity of wild-type and mutant phenylalanine hydroxylase and its regulation by phenylalanine and tetrahydrobiopterin at physiological and pathological concentrations: an isothermal titration calorimetry study. Mol Genet Metab 86(Suppl 1): S43–S53. doi:10.1016/j.ymgme.2005.04.008.

    Article  PubMed  CAS  Google Scholar 

  • Pey AL, Perez B, Desviat LR, et al (2004a) Mechanisms underlying responsiveness to tetrahydrobiopterin in mild phenylketonuria mutations. Hum Mutat 24(5): 388–399. doi:10.1002/humu.20097.

    Article  PubMed  CAS  Google Scholar 

  • Pey AL, Thórólfsson M, Teigen K, Ugarte M, Martínez A (2004b) Thermodynamic characterization of the binding of tetrahydropterins to phenylalanine hydroxylase. J Am Chem Soc 126: 13670–13678. doi:10.1021/ja047713s.

    Article  PubMed  CAS  Google Scholar 

  • Pey AL, Stricher F, Serrano L, Martinez A (2007) Predicted effects of missense mutations on native-state stability account for phenotypic outcome in phenylketonuria, a paradigm of misfolding disease. Am J Hum Genet 81(5): 1006–1024.

    Article  PubMed  CAS  Google Scholar 

  • Phillips RS, Parniak MA, Kaufman S (1984) Spectroscopic investigation of ligand interaction with hepatic phenylalanine hydroxylase: evidence for a conformational change associated with activation. Biochemistry 23: 3836–3842. doi:10.1021/bi00312a007.

    Article  PubMed  CAS  Google Scholar 

  • Scavelli R, Ding Z, Blau N, et al (2005) Stimulation of hepatic phenylalanine hydroxylase activity but not Pah-mRNA expression upon oral loading of tetrahydrobiopterin in normal mice. Mol Genet Metab 86(Suppl 1): S153–S155. doi:10.1016/j.ymgme.2005.09.015.

    Article  PubMed  CAS  Google Scholar 

  • Thony B, Ding Z, Martínez A (2004) Tetrahydrobiopterin protects phenylalanine hydroxylase activity in vivo: implications for tetrahydrobiopterin-responsive hyperphenylalaninemia. FEBS Lett 577(3): 507–511. doi:10.1016/j.febslet.2004.10.056.

    Article  PubMed  CAS  Google Scholar 

  • Zurfluh MR, Zschocke J, Lindner M, et al (2008) Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Hum Mutat 29(1): 167–175. doi:10.1002/humu.20637.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Randi Svebak and Ali Javier Sepulveda for expert technical help. A. L. P. and A. M. are supported by the Research Council of Norway and Helse-Vest. This work was supported by NIH grant 2R44HD075156-02 to S. F. D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Dobrowolski.

Additional information

Communicating editor: Nenad Blau

Competing interests: None declared

References to electronic databases: Online Mendelian Inheritance in Man: http://www.ncbi.nlm.nih.gov/sites/entrez?db = omim. Enzyme Commission: http://www.chem.qmul.ac.uk/iubmb/enzyme/. PAH Mutation database: http://www.pahdb.mcgill.ca/.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrowolski, S.F., Pey, A.L., Koch, R. et al. Biochemical characterization of mutant phenylalanine hydroxylase enzymes and correlation with clinical presentation in hyperphenylalaninaemic patients. J Inherit Metab Dis 32, 10–21 (2009). https://doi.org/10.1007/s10545-008-0942-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-0942-6

Keywords

Navigation