Skip to main content
Log in

What we know that could influence future treatment of phenylketonuria

  • BH4 and PKU
  • Published:
Journal of Inherited Metabolic Disease

Summary

Phenylketonuria (PKU), a Mendelian autosomal recessive phenotype (OMIM 261600), is an inborn error of metabolism that can result in impaired postnatal cognitive development. The phenotypic outcome is multifactorial in origin, based both in nature, the mutations in the gene encoding the l-phenylalanine hydroxylase enzyme, and nurture, the nutritional experience introducing l-phenylalanine into the diet. The PKU story contains many messages including a framework to appreciate the complexity of this disease where phenotype reflects both locus-specific and genomic components. This knowledge is now being applied in the development of patient-specific therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PKU:

phenylketonuria

PAH :

phenylalanine hydroxylase gene

PAH:

phenylalanine hydroxylase

Phe:

phenylalanine

Tyr:

tyrosine

HPA:

hyperphenylalaninaemia

LSDB:

locus-specific database

PAHdb:

phenylalanine hydroxylase locus-specific mutation database

BH4 :

(6R)-l-erythro-5,6,7,8-tetrahydrobiopterin

LNAA:

large neutral amino acids

PAL:

phenylalanine ammonia lyase

PEG:

polyethylene glycol

References

  • Armstrong MD, Tyler FH (1955) Studies on phenylketonuria. I. Restriction phenylalanine intake in phenylketonuria. J Clin Invest 34: 565–580.

    Article  PubMed  CAS  Google Scholar 

  • Bernegger C, Blau N (2002) High frequency of tetrahydrobiopterin-responsiveness among hyperphenylalaninemias: A study of 1,919 patients observed from 1988 to 2002. Mol Genet Metab 77: 304–313.

    Article  PubMed  CAS  Google Scholar 

  • Bickel H, Gerrard J, Hickmans EM (1954) Influence of phenylalanine intake on the chemistry and behaviour of a phenylketonuric child. Acta Paediat 43: 64–77.

    Article  CAS  Google Scholar 

  • Burton BK, Grange DK, Milanowski A, et al (2007) The response of patients with phenylketonuria and elevated serum phenylalanine to treatment with oral sapropterin dihydrochloride (6R-tetrahydrobiopterin): a phase II, multicentre, open-label, screening study. J Inherit Metab Dis 30: 700–707.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Woo SL (2005) Complete and persistent phenotypic correction of phenylketonuria in mice by site-specific genome integration of murine phenylalanine hydroxylase cDNA. Proc Natl Acad Sci USA 102: 15581–15586.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Woo SL (2007) Correction in female PKU mice by repeated administration of mPAH cDNA using phiBT1 integration system. Mol Ther 15: 1789–1795.

    Article  PubMed  CAS  Google Scholar 

  • Cristiano RJ, Smith LC, Woo SL (1993) Hepatic gene therapy: adenovirus enhancement of receptor-mediated gene delivery and expression in primary hepatocytes. Proc Natl Acad Sci U S A 90(6): 2122–2126.

    Article  PubMed  CAS  Google Scholar 

  • Cockburn F, Clark BJ (1996) Recommendations for protein and amino acid intake in phenylketonuric patients. Eur J Pediatr 155(S1): S125–S129.

    Article  PubMed  Google Scholar 

  • Cockburn F, Clark BJ, Caine EA, et al (1996) Fatty acids in the stability of neuronal membrane: Relevance to PKU. Int Pediatr 11: 56–60.

    Google Scholar 

  • Danks DM, Bartholomé K, Clayton BE, et al (1978) Malignant hyperphenylalaninemia - current status (June 1977). J Inherit Metab Dis 1: 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Dent CE (1957) Relation of biochemical abnormality to development of mental defect in phenylketonuria. Discussion to paper by Armstrong, M.D. In Ross Labs., ed. Report of 23rd Ross Pediatric Research Conference. Etiological Factors in Mental Retardation. Ohio: Ross Labs., 32.

  • Desviat LR, Perez B, Gámez A, et al (1999) Genetic and phenotypic aspects of phenylalanine hydroxylase deficiency in Spain: molecular survey by regions. Eur J Hum Genet 7: 386–392.

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Harding CO, Thöny B (2004) State-of-the-art 2003 on PKU gene therapy. Mol Genet Metab 81: 3–8.

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Georgiev P, Thöny B (2006) Administration-route and gender-independent long-term therapeutic correction of phenylketonuria (PKU) in a mouse model by recombinant adeno-associated virus 8 pseudotyped vector-mediated gene transfer. Gene Ther 13: 587–593.

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Harding CO, Rebuffat A, Elzaouk L, Wolff JA, Thöny B (2008) Correction of murine PKU following AAV-mediated intramuscular expression of a complete phenylalanine hydroxylating system. Mol Ther 16: 673–681.

    Article  PubMed  CAS  Google Scholar 

  • Donlon J, Levy H, Scriver CR (2008) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Valle D, Beaudet A, Vogelstein B, Kinzler K, Antonarakis S, Ballabio A, eds.; Scriver CR, Childs B, Sly WS, emeritus eds. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, Chapter 77. Online. http://genetics.accessmedicine.com.

    Google Scholar 

  • Eavri R, Lorberboum-Galski H (2007) A novel approach for enzyme replacement therapy. The use of phenylalanine hydroxylase-based fusion proteins for the treatment of phenylketonuria. J Biol Chem 282: 23402–23409.

    Article  PubMed  CAS  Google Scholar 

  • Eisensmith RC, Woo SL (1996) Gene therapy for phenylketonuria. Eur J Pediatr 155(S1): S16–S19.

    Article  PubMed  CAS  Google Scholar 

  • Embury JE, Charron CE, Martynyuk A, et al (2007) PKU is a reversible neurodegenerative process within the nigrostriatum that begins as early as 4 weeks of age in Pah(enu2) mice. Brain Res 1127(1): 136–150.

    Article  PubMed  CAS  Google Scholar 

  • Erlandsen H, Stevens RC (1999) The structural basis of phenylketonuria. Mol Genet Metab 68: 103–125.

    Article  PubMed  CAS  Google Scholar 

  • Erlandsen H, Stevens RC (2008) Structural studies of phenylalanine hydroxylase enzyme. In Valle D, Beaudet A, Vogelstein B, Kinzler K, Antonarakis S, Ballabio A, eds.; Scriver CR, Childs B, Sly WS, emeritus eds. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, Chapter 77S2. Online. http://genetics.accessmedicine.com.

    Google Scholar 

  • Erlandsen H, Pey AL, Gamez A, et al (2004) Correction of kinetic and stability defects by the tetrahydrobiopterin in phenylketonuria patients with certain phenylalanine hydroxylase mutations. Proc Nat Acad Sci U S A 101: 16903–16908.

    Article  CAS  Google Scholar 

  • Fang B, Eisensmith RC, Li XH, et al (1994) Gene therapy for phenylketonuria: phenotypic correction in a genetically deficient mouse model by adenovirus-mediated hepatic gene transfer. Gene Ther 1: 247–254.

    PubMed  CAS  Google Scholar 

  • Fölling A (1934) Uber Ausscheidung von Phenylbrenztraubensaure in den Harn als Stoffwechselanomalie in Verbindung mit Imbezillitat. Hoppe-Seylers Z Physiol Chem 277: 169–176.

    Google Scholar 

  • Gámez A, Sarkissian C, Wang L, et al (2005) Development of pegylated forms of recombinant Rhodosporidium toruloides phenylalanine ammonia-lyase for the treatment of classical phenylketonuria. Mol Ther 11: 986–989.

    Article  PubMed  CAS  Google Scholar 

  • Gámez A, Sarkissian CN, Wang L, et al (2008) The changing face of PKU therapy (Part I): What are the options? Abstract. International Conference: Tetrahydrobiopterin, PKU, and NOS. 23–28 March, St. Moritz, Switzerland.

  • Guldberg P, Rey F, Zschocke J, et al (1998) A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet 63(1): 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Guthrie R, Susi A (1963) A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32: 338–343.

    Google Scholar 

  • Hanley WB, Azen C, Koch R (2004) Matenal Phenylketonuria Collaborative Study (MPKUCS)—the ‘outliers’. J Inherit Metab Dis 27: 711–723.

    Article  PubMed  CAS  Google Scholar 

  • Hardelid P, Cortina-Borja M, Munro A, et al (2007) The Birth Prevalence of PKU in Populations of European, South Asian and Sub-Saharan African Ancestry Living in South East England. Ann Hum Genet 72(Pt 1): 65–71.

    Google Scholar 

  • Harding CO (2004) Recent advances in cell and gene therapy for PKU. National PKU News 16: 1–5.

    Google Scholar 

  • Harding CO, Wild K, Chang D, Messing A, Wolff JA (1998) Metabolic engineering as therapy for inborn errors of metabolism-development of mice with phenylalanine hydroxylase expression in muscle. Gene Ther 5: 677–683.

    Article  PubMed  CAS  Google Scholar 

  • Harding CO, Gillingham MB, Hamman K, et al (2006) Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria. Gene Ther 13: 457–462.

    Article  PubMed  CAS  Google Scholar 

  • Hodgins DS (1971) Yeast phenylalanine ammonia-lyase. Purification, properties, and the identification of catalytically essential dehydroalanine. J Biol Chem 246: 2977–2985.

    Google Scholar 

  • Hoskins JA, Holliday SB, Greenway AM (1984) The metabolism of cinnamic acid by healthy and phenylketonuric adults: a kinetic study. Biomed Mass Spectrom 11: 296–300.

    Article  PubMed  CAS  Google Scholar 

  • Jervis GA (1953) Phenylpyruvic oligophrenia: deficiency of phenylalanine oxidizing system. Proc Soc Exp Biol Med 82: 514–515.

    PubMed  CAS  Google Scholar 

  • John SW, Rozen R, Scriver CR, Laframboise R, Laberge C (1990) Recurrent mutation, gene conversion, or recombination at the human phenylalanine hydroxylase locus: Evidence in French- Canadians and a catalog of mutations. Am J Hum Genet 46: 970–974.

    PubMed  CAS  Google Scholar 

  • Kane JF, Fiske JM (1985) Regulation of phenylalanine ammonia lyase in Rhodotorula glutinis. J Bacteriol 161: 963–966.

    PubMed  CAS  Google Scholar 

  • Kaufman S (1963) The structure of phenylalanine hydroxylation cofactor. Proc Natl Acad Sci U S A 50: 1085–1093.

    Article  PubMed  CAS  Google Scholar 

  • Kayaalp E, Treacy E, Waters PJ, Byck S, Nowacki P, Scriver CR (1997) Human phenylalanine hydroxylase mutations and hyperphenylalaninemia phenotypes: a metanalysis of genotype–phenotype correlations. Am J Hum Genet 61: 1309–1317.

    Article  PubMed  CAS  Google Scholar 

  • Koch R, Moseley KD, Yano S, Nelson M Jr, Moats RA (2003) Large neutral amino acid therapy and phenylketonuria: a promising approach to treatment. Mol Genet Metab 79: 110–113.

    Article  PubMed  CAS  Google Scholar 

  • Kure S, Hou D-C, Ohura T, et al (1999) Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr 135: 375–378.

    Article  PubMed  CAS  Google Scholar 

  • Kure S, Sato K, Fujii K, et al (2004) Wild-type phenylalanine activity is enhanced by tetrahydrobiopterin supplementation in vivo: an implication for therapeutic basis of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Mol Genet Metab 83: 150–156.

    Article  PubMed  CAS  Google Scholar 

  • Kwok SCM, Ledley FD, DiLella AG, Robson KJH, Woo SLC (1985) Nucleotide sequence of a full-length complementary DNA clone and amino acid sequence of human phenylalanine hydroxylase. Biochemistry 24: 556–561.

    Article  PubMed  CAS  Google Scholar 

  • Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7: 21–39.

    Article  PubMed  CAS  Google Scholar 

  • Ledley FD, Grenett HE, DiLella AG, Kwok SCM, Woo SLC (1985) Gene transfer and gene expression of human phenylalanine hydroxylase. Science 228: 77–79.

    Article  PubMed  CAS  Google Scholar 

  • Ledley FD, Grenett HE, McGinnis-Shelnutt M, Woo SLC (1986) Retroviral-mediated gene transfer of human phenylalanine hydroxylase into NIH 3T3 and hepatoma cells. Proc Natl Acad Sci U S A 83: 409–413.

    Article  PubMed  CAS  Google Scholar 

  • Lenke RR, Levy HL (1980) Maternal phenylketonuria and hyperphenylalaninemia. An international survey of untreated and treated pregnancies. N Engl J Med 303: 1202–1208.

    PubMed  CAS  Google Scholar 

  • Levy HL (1999) Phenylketonuria: old disease, new approach to treatment [comment]. Proc Natl Acad Sci U S A 96: 1811–1813.

    Article  PubMed  CAS  Google Scholar 

  • Levy HL, Milanowski A, Chakrapani A, et al (2007) Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study. Lancet 370: 504–510.

    Article  PubMed  CAS  Google Scholar 

  • Lichter-Konecki U, Hipke CM, Konecki D (1999) Human phenylalanine hydroxylase gene expression in kidney and other nonhepatic tissues. Molec Genet Metab 67: 308–316.

    Article  CAS  PubMed  Google Scholar 

  • Lin CM, Tan Y, Lee YM, Chang CC, Hsiao KJ (1997) Expression of human phenylalanine hydroxylase activity in T lymphocytes of classical phenylketonuria children by retroviral-mediated gene transfer. J Inherit Metab Dis 20: 742–754.

    Article  PubMed  CAS  Google Scholar 

  • Matalon R, Michals-Matalon K, Bhatia G, et al (2006) Large neutral amino acids in the treatment of phenylketonuria (PKU). J Inherit Metab Dis 29: 732–738.

    Article  PubMed  CAS  Google Scholar 

  • Medical Research Council (UK) (1993) Phenylketonuria due to phenylalanine hydroxylase deficiency: an unfolding story. BMJ 306: 115–119.

    Google Scholar 

  • Medical Research Council Working Party on Phenylketonuria [Cockburn F, Barwell BE, Brenton DP et al] (1993) Recommendations on the dietary management of phenylketonuria. Report of Medical Research Council Working Party on Phenylketonuria. Arch Dis Child 68: 426–427.

    Article  Google Scholar 

  • Mitchell JJ, Scriver CR (2007) Phenylalanine hydroxylase deficiency. www.genereviews.org.

  • Moats RA, Koch T, Moseley K, et al (2000) Brain phenylalanine concentration in the management of adults with phenylketonuria. J Inherit Metab Dis 23: 7–14.

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki S, Mizukami H, Ogura T, et al (2004) Long-term correction of hyperphenylalaninemia by AAV-mediated gene transfer leads to behavioral recovery in phenylketonuria mice. Gene Ther 11: 1081–1086.

    Article  PubMed  CAS  Google Scholar 

  • Möller HE, Weglage J, Widermann D, Ullrich K (1998) Blood-brain barrier phenylalanine transport and individual vulerability in phenylketonuria. J Cereb Blood Flow Metab 18: 1184–1191.

    Article  PubMed  Google Scholar 

  • Muntau AC, Roschinger W, Habich M, et al (2002) Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 347: 2122–2132.

    Article  PubMed  CAS  Google Scholar 

  • National Academy of Sciences. Committee for the Study of Inborn Errors of Metabolism DoMSAoLS. 1975. Genetic Screening: Programs, Principles, and Research. Washington, DC: National Academy Press.

    Google Scholar 

  • National Institutes of Health Consensus Development Panel (2001) National Institutes of Health Consensus Development Conference Statement: Phenylketonuria: Screening and management, October 16–18, 2000. Pediatrics 108: 972–982.

    Article  Google Scholar 

  • Oltvai ZN, Barabasi AL (2002) Systems biology. Life’s complexity pyramid. Science 298: 763–764.

    Article  PubMed  CAS  Google Scholar 

  • Penrose LS (1935) Inheritance of phenylpyruvic amentia (Phenylketonuria). Lancet 226: 192–194.

    Article  Google Scholar 

  • Ramus SJ, Forrest SM, Pitt DB, Saleeba JA, Cotton RGH (1993) Comparison of genotype and intellectual phenotype in untreated PKU patients. J Med Genet 30: 401–405.

    Article  PubMed  CAS  Google Scholar 

  • Riva E, Agostoni C, Biasucci G, et al (1996) Early breastfeeding is linked to higher intelligence quotient scores in dietary treated phenylketonuric children. Acta Paediatr 85: 56–58.

    Article  PubMed  CAS  Google Scholar 

  • Salter M, Knowles RG, Pogson CI (1986) Quantification of the importance of individual steps in the control of aromatic amino acid metabolism. Biochem J 234: 635–647.

    PubMed  CAS  Google Scholar 

  • Santos LL, Magalhães Mde C, Januário JN, Aguiar MJ, Carvalho MR (2006) The time has come: a new scene for PKU treatment. Genet Mol Res 5: 33–44.

    PubMed  Google Scholar 

  • Sarkissian CN (2006) Enzyme therapy for PKU. In: Blau N, ed. PKU and BH 4 —Advances in Phenylketonuria and Tetrahydrobiopterin. Heilbronn: SPS Verlagsgesellschaft mbH, 350–369.

    Google Scholar 

  • Sarkissian CN, Gámez A (2005) Phenylalanine ammonia lyase, enzyme substitution therapy for phenylketonuria, where are we now? Mol Genet Metab 86(Supplement 1): S22–S26.

    Article  PubMed  CAS  Google Scholar 

  • Sarkissian CN, Shao Z, Blain F, et al (1999) A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc Natl Acad Sci U S A 96: 2339–2344.

    Article  PubMed  CAS  Google Scholar 

  • Sarkissian CN, Boulais DM, McDonald JD, Scriver CR (2000) A heteroallelic mutant mouse model: a new orthologue for human hyperphenylalaninemia. Mol Genet Metab 69: 188–194.

    Article  PubMed  CAS  Google Scholar 

  • Sarkissian CN, Gámez A, Wang L, et al (2008) The changing face of PKU therapy (Part II): Who will benefit? Abstract. International Conference: Tetrahydrobiopterin, PKU, and NOS. 23–28 March, St. Moritz, Switzerland.

  • Scriver CR (1967) Treatment in medical genetics. In: Crow JF, Neel JV, eds. Proceedings of the Third International Congress of Human Genetics. Baltimore: The Johns Hopkins Press, 45–56.

    Google Scholar 

  • Scriver CR (2007) Wiley 200th Anniversary Tribute Article. The PAH Gene, phenylketonuria, and a paradigm shift. Hum Mut 28: 831–845.

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Waters PJ, Sarkissian C, et al (2000) PAHdb: A locus-specific knowledgebase. Hum Mut 15: 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Hurtubise M, Konecki D, et al (2003) PAHdb 2003: What a locus-specific knowledgebase can do. Hum Mutat 21: <H6>333–344.

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Hardelid P, Cortina-Borja M, et al (2006) Did Phenylketonuria (PKU) arise after the Out-of-Africa migration? Am J Hum Genet Abstracts 196 (#995-A).

  • Shedlovsky A, McDonald JD, Symula D, Dove WF (1993) Mouse models of human phenylketonuria. Genetics 134: 1205–1210.

    PubMed  CAS  Google Scholar 

  • Smith I (1994) Treatment of phenylalanine hydroxylase deficiency. Acta Paediatr Suppl 407: 60–65.

    Article  PubMed  CAS  Google Scholar 

  • Snapper I, Yu TF, Chiang YT (1940) Cinnamic acid metabolism in man. Proc Soc Exp Biol Med 44: 30–34.

    CAS  Google Scholar 

  • Spaapen LJ, Rubio-Gozalbo ME (2003) Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency, state-of-the-art. Mol Genet Metab 78: 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Tessari P, Deferrari G, Robaudo C, et al (1999) Phenylalanine hydroxylation across the kidney in humans. Kidney Int 56: 2168–2172.

    PubMed  CAS  Google Scholar 

  • Treacy E, Pitt JJ, Seller J, Thompson GN, Ramus S, Cotton RGH (1996) In vivo disposal of phenylalanine in phenylketonuria: A study of two siblings. J Inherit Metab Dis 19: 595–602.

    Article  PubMed  CAS  Google Scholar 

  • Vajro P, Strisciuglio P, Houssin D, et al (1993) Correction of phenylketonuria after liver transplantation in a child with cirrhosis. N Engl J Med 329: 363.

    Article  PubMed  CAS  Google Scholar 

  • Waters PJ, Parniak MA, Nowacki P, Scriver CR (1998) In vitro expression analysis of mutations in phenylalanine hydroxylase: Linking genotype to phenotype and structure to function. Hum Mutat 11: 4–17.

    Article  PubMed  CAS  Google Scholar 

  • Weglage J, Moller HE, Wiedermann D, Cipcic-Schmidt S, Zschocke J, Ullrich K (1998a) In vivo NMR spectroscopy in patients with phenylketonuria. Clinical significance of interindividual differences in brain phenylalanine concentrations. J Inherit Metab Dis 21: 81–82.

    Article  PubMed  CAS  Google Scholar 

  • Weglage J, Wiedermann D, Moller H, Ullrich K (1998b) Pathogenesis of different clinical outcomes in spite of identical genotypes and comparable blood phenylalanine concentration in phenylketonurics. J Inherit Metab Dis 21: 181–182.

    Article  PubMed  CAS  Google Scholar 

  • Woolf LI, Griffiths R, Moncrieff A (1955) Treatment of phenylketonuria with a diet low in phenylalanine. Br Med J 1: 57–64.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Raymond C. Stevens and BioMarin Pharmaceutical Inc. for making this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. Sarkissian.

Additional information

Communicating editor: Nenad Blau

Competing interests: None declared

References to electronic databases: Phenylketonuria: OMIM +261600. Phenylalanine hydroxylase: EC 1.14.16.1. Phenylalanine ammonia lyase: EC 4.3.1.5. PAHdb, Phenylalanine hydroxylase locus-specific mutation database: www.pahdb.mcgill.ca. GeneReviews: www.genereviews.org.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkissian, C.N., Gámez, A. & Scriver, C.R. What we know that could influence future treatment of phenylketonuria. J Inherit Metab Dis 32, 3–9 (2009). https://doi.org/10.1007/s10545-008-0917-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-0917-7

Keywords

Navigation