Skip to main content
Log in

Amino acids in CSF and plasma in hyperammonaemic coma due to arginase1 deficiency

  • Online Report
  • Published:
Journal of Inherited Metabolic Disease

Summary

We report the CSF and plasma amino acid concentrations and their ratios in a male patient with arginase1 deficiency with an unusual early presentation at 34 days of age. He developed hyperammonaemic coma (ammonia >400 μmol/L; normal <90 μmol/L) on postnatal day 35. CSF and plasma concentrations were assayed by ion-exchange chromatography on day 36. Arginine was increased both in plasma (971 μmol/L; controls (mean ± 2SD) 50 ± 42) and in CSF (157 μmol/L; controls 19 ± 8.6), resulting in a normal CSF/plasma ratio of 0.16 (controls 0.41 ± 0.26). Interestingly, glutamine was disproportionately high in CSF (3114 μmol/L; controls 470 ± 236) but normal in plasma (420 μmol/L; controls 627 ± 246); the ratio exceeded unity (7.4; controls 0.76 ± 0.31). The CSF/plasma ratios of most neutral amino acids were elevated but not those of the imino- and of the dibasic amino acids lysine and ornithine. The mechanism leading to the increase of most neutral amino acids in brain is not known.

Conclusion: A normal glutamine in plasma does not exclude an increased concentration in CSF; it could be useful to ascertain by MRS that a high CSF glutamine concentration truly reflects a high concentration in brain tissue for better understanding its pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CSF:

cerebrospinal fluid

EEG:

electroencephalography

MRS:

magnetic resonance spectroscopy

References

  • Albrecht J, Dolińska M (2001) Glutamine as a pathogenic factor in hepatic encephalopathy. J Neurosci Res 65: 1–5. doi:10.1002/jnr.1121.

    Article  PubMed  CAS  Google Scholar 

  • Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood-brain barrier. Prog Drug Res 61: 39–78.

    PubMed  CAS  Google Scholar 

  • Braga AC, Vilarinho L, Ferreira E, Rocha H (1997) Hyperargininemia presenting as persistant neonatal jaundice and hepatic cirrhosis. J Pediatr Gastroenterol Nutr 24: 218–221. doi:10.1097/00005176-199702000-00018.

    Article  PubMed  CAS  Google Scholar 

  • Cederbaum SD, Shaw KN, Spector EB, Verity MA, Snodgrass PJ, Sugarman GI (1979) Hyperargininemia with arginase deficiency. Pediatr Res 13: 827–833. doi:10.1203/00006450-197907000-00007.

    Article  PubMed  CAS  Google Scholar 

  • Crombez EA, Cederbaum SD (2005) Hyperargininemia due to liver arginase deficiency. Mol Genet Metab 84: 243–251. doi:10.1016/j.ymgme.2004.11.004.

    Google Scholar 

  • De Deyn PP, Marescau B, Qureshi IA (1997) Hyperargininemia: a treatable inborn error of metabolism? In: De Deyn PP, Marescau B, Quereshi IA, Mori A, eds. Guanidino Compounds in Biology and Medicine, Vol. 1. London: John Libbey & Company Ltd, 53–69.

    Google Scholar 

  • Duran M (2003) Miscellaneous analysis. In: Blau N, Duran M, Blaskovics ME, Gibson KM, eds. Physican’s Guide to the Laboratory Diagnosis of Metabolic Diseases, 2nd edn. Berlin, Heidelberg: Springer, 45–56.

    Google Scholar 

  • Feillet F, Leonard JV (1998) Alternative pathway therapy for urea cycle disorders. J Inherit Metab Dis 21(Suppplement 1): 101–111. doi:10.1023/A:1005365825875.

    Article  PubMed  CAS  Google Scholar 

  • Grody WW, Klein D, Dodson AE, et al (1992) Molecular genetic study of human arginase deficiency. Am J Hum Genet 50: 1281–1290.

    PubMed  CAS  Google Scholar 

  • Iyer R, Jenkinson CP, Vockley JG, Kern RM, Grody WW, Cederbaum S (1998) The human arginase and arginase deficiency. J Inherit Metab Dis 21: 86–100. doi:10.1023/A:1005313809037.

    Article  PubMed  CAS  Google Scholar 

  • Kamoun P, Richard V, Rabier D, Saudubray JM (2002) Plasma lysine concentration and availability of 2-ketoglutarate in liver mitochondria. J Inherit Metab Dis 25: 1–6. doi:10.1023/A:1015195009330.

    Article  PubMed  CAS  Google Scholar 

  • Naylor EW, Cederbaum SD, Evans JE, Tieckelmann H, Guthrie R (1977) Elevated urinary pyrimidine excretion in three patients with arginase deficiency. Am J Hum Gen 29: 81a.

    Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161: 303–310. doi:10.1016/0006-8993(79)90071-4.

    Article  PubMed  CAS  Google Scholar 

  • Picker JD, Puga AC, Levy HL, et al (2003) Arginase deficiency with lethal neonatal expression: evidence for glutamine hypothesis of cerebral edema. J Pediatrics 142: 349–352. doi:10.1067/mpd.2003.97.

    Article  Google Scholar 

  • Scaglia F, Lee B (2006) Clinical, biochemical, and molecular spectrum of hyperargininemia due to arginase1 deficiency. Am J Med Genet C Semin Med Genet 142C(2): 113–120. doi:10.1002/ajmg.c.30091.

    Article  PubMed  CAS  Google Scholar 

  • Scholl-Bürgi S, Haberlandt E, Heinz-Erian P, et al (2008) Amino acid cerebrospinal fluid/plasma ratios in children: influence of age, gender and antiepileptic medication. Pediatrics 121(4): e920–e926. doi:10.1542/peds.2007-1631.

    Article  PubMed  Google Scholar 

  • Simmonds HA, Duley JA, Davies PM (1991) Analysis of purines and pyrimidines in blood, urine, and other physiological fluids. In: Hommes FA, ed. Techniques in Diagnostic Human Biochemical Genetics. A Laboratory Manual. New York: Wiley-Liss, 397–424.

    Google Scholar 

  • Terheggen HG, Schwenk A, Lowenthal A, van Sande M, Colombo JP (1969) Argininaemia with arginase deficiency. Lancet 294(7623): 748–749. doi:10.1016/S0140-6736(69)90466-8.

    Article  Google Scholar 

  • Terheggen HG, Schwenk A, Lowenthal A, van Sande M, Colombo JP (1970a) Hyperargininämie mit Arginasedefekt. Eine neue familiäre Stoffwechselstörung. I. Klinische Befunde. Z Kinderheilkd 107: 298–312. doi:10.1007/BF00438892.

    Article  PubMed  CAS  Google Scholar 

  • Terheggen HG, Schwenk A, Lowenthal A, van Sande M, Colombo JP (1970b) Hyperargininämie mit Arginasedefekt. Eine neue familiäre Stoffwechselstörung. II. Biochemische Untersuchungen. Z Kinderheilkd 107: 313–323. doi:10.1007/BF00438893.

    Article  PubMed  CAS  Google Scholar 

  • van Sande M THG, Clara R, Leroy JG, Lowenthal A (1971) Lysine cystine pattern associated with neurological disorders. In: Carson NAJ, Raine DN, eds. Inherited Disorders of Sulfur Metabolism. Edinburgh: Churchill Livingstone, 85–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Scholl-Bürgi.

Additional information

Communicating editor: Claude Bachmann

Competing interests: None declared

References to electronic databases: Hyperargininaemia: OMIM 207800. Arginase1: EC 3.5.3.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholl-Bürgi, S., Baumgartner Sigl, S., Häberle, J. et al. Amino acids in CSF and plasma in hyperammonaemic coma due to arginase1 deficiency. J Inherit Metab Dis 31 (Suppl 2), 323–328 (2008). https://doi.org/10.1007/s10545-008-0903-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-0903-0

Keywords

Navigation