Skip to main content
Log in

FDG-PET findings in patients with galactosaemia

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Summary

Despite treatment with a galactose-restricted diet, many galactosaemia patients develop lifelong cognitive impairment, speech abnormalities and a gamut of neurological problems including cognitive impairment and tremors. No study has explored changes in cerebral glucose metabolism in patients with galactosaemia. Five patients with galactosaemia had ages ranging from 20 to 40 years (mean age 28 years) and eight similarly aged controls received brain [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) scans. PET scans were analysed using a previously validated template methodology of regions of interest (ROIs). Count ratios for each anatomical ROI were compared between the galactosaemic patients and the healthy controls. Statistical parametric mapping (SPM) software was also used to further analyse the data. ROI analysis showed that galactosaemic patients had significant bilateral decreases in cerebral glucose metabolism in the superior temporal gyrus, medial occipital lobe, parietal lobe, cerebellum, calcarine cortex, superior frontal cortex, and superior parietal cortex when compared with controls. Significant increases were seen in the cingulate gyrus and temporal poles, bilaterally. SPM analysis revealed foci of decreased glucose metabolism in the caudate, cerebellum, precentral gyrus and cerebellar tonsils of galactosaemic patients. SPM also showed increased glucose metabolism in the subcallosal gyrus and claustrum. The results show significant abnormalities in cerebral function in patients with galactosaemia, particularly with widespread decreases in cortical metabolism. These abnormalities appear to be in brain regions that may be associated with the neuropsychological deficits in these patients. PET brain scans may be of value in galactosaemia patients to evaluate for dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • al-Essa MA, Rashed MS, Bakheet SM, Patay ZJ, Ozand PT (2000) Glutaric aciduria type II: observations in seven patients with neonatal- and late-onset disease. J Perinatol 20(2): 120–128.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich-Keil JL (2006) Galactosemia: the good, the bad, and the unknown. J Cell Physiol 209(3): 701–705.

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Ashburner, J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ (1995) Spatial registration and normalization of images. Hum Brain Mapp 3(3): 165–189.

    Article  Google Scholar 

  • Fukuda M, Mentis MJ, Ma Y, et al (2001) Networks mediating the clinical effects of pallidal brain stimulation for Parkinson’s disease: a PET study of resting-state glucose metabolism. Brain 124(Pt 8): 1601–1609.

    Article  PubMed  CAS  Google Scholar 

  • Hermann W, Barthel H, Hesse S, et al (2002) Comparison of clinical types of Wilson’s disease and glucose metabolism in extrapyramidal motor brain regions. J Neurol 249(7): 896–901.

    Article  PubMed  CAS  Google Scholar 

  • Hilker R, Voges J, Weisenbach S, et al (2004) Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 24(1): 7–16.

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Tang C, Feigin A, et al (2007) Changes in network activity with the progression of Parkinson’s disease. Brain 130(Pt 7): 1834–1846.

    Article  PubMed  Google Scholar 

  • Karp JS, Surti S, Daube-Witherspoon ME, et al (2003) Performance of a brain PET camera based on anger-logic gadolinium oxyorthosilicate detectors. J Nucl Med 44(8): 1340–1349.

    PubMed  CAS  Google Scholar 

  • Kaufman FR, Horton EJ, Gott P, et al (1995a) Abnormal somatosensory evoked potentials in patients with classic galactosemia: correlation with neurological outcome. J Child Neurol 10(1): 32–36.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman FR, McBride-Chang C, Manis FR, Wolff JA, Nelson MD (1995b) Cognitive functioning, neurological status and brain imaging in classical galactosemia. Eur J Pediatr 154(7 Supplement 2): S2–5.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster JL, Woldorff MG, Parsons LM, et al (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10(3): 120–131.

    Article  PubMed  CAS  Google Scholar 

  • Molnár MJ, Valikovics A, Molnár S, et al (2000) Cerebral blood flow and glucose metabolism in mitochondrial disorders. Neurology 55(4): 544–548.

    PubMed  Google Scholar 

  • Moore DF, Herscovitch P, Schiffmann R (2001) Selective arterial distribution of cerebral hyperperfusion in Fabry disease. J Neuroimaging 11(3): 303–307.

    Article  PubMed  CAS  Google Scholar 

  • Nelson CD, Waggoner DD, Donnell GN, Tuerck JM, Buist NR (1991) Verbal dyspraxia in treated galactosemia. Pediatrics 88(2): 346–350.

    PubMed  CAS  Google Scholar 

  • Nelson MD Jr, Wolff JA, Cross CA, Donnell GN, Kaufman FR. (1992) Galactosemia: evaluation with MR imaging. Radiology 184(1): 255–261.

    PubMed  Google Scholar 

  • Newberg AB, Alavi A (2005) The role of PET imaging in the management of patients with central nervous system disorders. Radiol Clin North Am 43(1): 49–65.

    Article  PubMed  Google Scholar 

  • Newberg A, Cotter A, Udeshi M, Alavi A, Clark C (2003) A metabolic imaging severity rating scale for the assessment of cognitive impairment. Clin Nucl Med 28(7): 565–570.

    Article  PubMed  Google Scholar 

  • Resnick SM, Karp JS, Turetsky B, Gur RE (1993) Comparison of anatomically-defined versus physiologically-based regional localization: effects on PET-FDG quantitation. J Nucl Med 34(12): 2201–2207.

    PubMed  CAS  Google Scholar 

  • Ridel KR, Leslie ND, Gilbert DL (2005) An updated review of the long-term neurological effects of galactosemia. Pediatr Neurol 33(3): 153–161.

    Article  PubMed  Google Scholar 

  • Segal S (1998) Komrower Lecture. Galactosaemia today: the enigma and the challenge. J Inherit Metab Dis 21(5): 455–471.

    Article  PubMed  CAS  Google Scholar 

  • Signorini M, Paulesu E, Friston K, et al (1999) Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping. Neuroimage 9(1): 63–80.

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar Stereotaxic Atlas of the Human Brain. New York: Thieme.

    Google Scholar 

  • Waggoner DD, Buist NR, Donnell GN (1990) Long-term prognosis in galactosaemia: results of a survey of 350 cases. J Inherit Metab Dis 13(6): 802–818.

    Article  PubMed  CAS  Google Scholar 

  • Wang ZJ, Berry GT, Dreha SF, Zhao H, Segal S, Zimmerman RA (2001) Proton magnetic resonance spectroscopy of brain metabolites in galactosemia. Ann Neurol 50(2): 266–269.

    Article  PubMed  CAS  Google Scholar 

  • Webb AL, Singh RH, Kennedy MJ, Elsas LJ (2003) Verbal dyspraxia and galactosemia. Pediatr Res 53(3): 396–402.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Newberg.

Additional information

Communicating editor: Michael Gibson

S. Segal deceased.

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubroff, J.G., Ficicioglu, C., Segal, S. et al. FDG-PET findings in patients with galactosaemia. J Inherit Metab Dis 31, 533–539 (2008). https://doi.org/10.1007/s10545-008-0806-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-0806-0

Keywords

Navigation