Skip to main content
Log in

Neurological implications of urea cycle disorders

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Summary

The urea cycle disorders constitute a group of rare congenital disorders caused by a deficiency of the enzymes or transport proteins required to remove ammonia from the body. Via a series of biochemical steps, nitrogen, the waste product of protein metabolism, is removed from the blood and converted into urea. A consequence of these disorders is hyperammonaemia, resulting in central nervous system dysfunction with mental status changes, brain oedema, seizures, coma, and potentially death. Both acute and chronic hyperammonaemia result in alterations of neurotransmitter systems. In acute hyperammonaemia, activation of the NMDA receptor leads to excitotoxic cell death, changes in energy metabolism and alterations in protein expression of the astrocyte that affect volume regulation and contribute to oedema. Neuropathological evaluation demonstrates alterations in the astrocyte morphology. Imaging studies, in particular 1H MRS, can reveal markers of impaired metabolism such as elevations of glutamine and reduction of myoinositol. In contrast, chronic hyperammonaemia leads to adaptive responses in the NMDA receptor and impairments in the glutamate–nitric oxide–cGMP pathway, leading to alterations in cognition and learning. Therapy of acute hyperammonaemia has relied on ammonia-lowering agents but in recent years there has been considerable interest in neuroprotective strategies. Recent studies have suggested restoration of learning abilities by pharmacological manipulation of brain cGMP with phosphodiesterase inhibitors. Thus, both strategies are intriguing areas for potential investigation in human urea cycle disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

UCD:

urea cycle disorder

HHH syndrome:

hyperornithinaemia–hyperammonaemia–homocitrullinuria syndrome

GS:

glutamine synthetase

OTC:

ornithine transcarbamylase

LTP:

long-term potentiation

fMRI:

functional MRI

MRS:

magnetic resonance spectroscopy

References

  • Albrecht J (1998) Roles of neuroactive amino acids in ammonia neurotoxicity. J Neurosci Res 51(2): 133–138.

    CAS  PubMed  Google Scholar 

  • Albrecht J, Norenberg MD (2006) Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44(4): 788–794.

    CAS  PubMed  Google Scholar 

  • Albrecht J, Sonnewald U, Waagepetersen HS, Schousboe A (2007) Glutamine in the central nervous system: function and dysfunction. Front Biosci 12: 332–343.

    CAS  PubMed  Google Scholar 

  • Alzaga AG, Salazar GA, Varon J (2006) Resuscitation great. Breaking the thermal barrier: Dr. Temple Fay. Resuscitation 69(3): 359–364.

    PubMed  Google Scholar 

  • Arican N, Kaya M, Yorulmaz C, et al (2006) Effect of hypothermia on blood–brain barrier permeability following traumatic brain injury in chronically ethanol-treated rats. Int J Neurosci 116(11): 1249–1261.

    CAS  PubMed  Google Scholar 

  • Bachmann C (1992) Ornithine carbamoyl transferase deficiency: findings, models and problems. J Inherit Metab Dis 15(4): 578–591.

    CAS  PubMed  Google Scholar 

  • Bachmann C (2002) Mechanisms of hyperammonemia. Clin Chem Lab Med 40(7): 653–662.

    CAS  PubMed  Google Scholar 

  • Bachmann C (2003a) Outcome and survival of 88 patients with urea cycle disorders: a retrospective evaluation. Eur J Pediatr 162(6): 410–416.

    PubMed  Google Scholar 

  • Bachmann C (2003b) Long-term outcome of patients with urea cycle disorders and the question of neonatal screening. Eur J Pediatr 162 (Supplement 1): S29–S33.

    CAS  PubMed  Google Scholar 

  • Bachmann C (2005) Long-term outcome of urea cycle disorders. Acta Gastroenterol Belg 68(4): 466–468.

    CAS  PubMed  Google Scholar 

  • Bachmann C, Colombo JP (1983) Increased tryptophan uptake into the brain in hyperammonaemia. Life Sci 33(24): 2417–2424.

    CAS  PubMed  Google Scholar 

  • Bachmann C, Colombo JP (1984) Increase of tryptophan and 5-hydroxyindole acetic acid in the brain of ornithine carbamoyltransferase deficient sparse-fur mice. Pediatr Res 18(4): 372–375.

    CAS  PubMed  Google Scholar 

  • Bachmann C, Braissant O, Villard AM, Boulat O, Henry H (2004) Ammonia toxicity to the brain and creatine. Mol Genet Metab 81(Supplement 1): S52–57.

    CAS  PubMed  Google Scholar 

  • Bates TE, Williams SR, Kauppinen RA, Gadian DG (1989) Observation of cerebral metabolites in an animal model of acute liver failure in vivo: a 1H and 31P nuclear magnetic resonance study. J Neurochem 53(1): 102–110.

    CAS  PubMed  Google Scholar 

  • Batshaw ML (1984) Hyperammonaemia. Curr Probl Pediatr 14(11): 1–69.

    CAS  PubMed  Google Scholar 

  • Batshaw ML (1994) Inborn errors of urea synthesis. Ann Neurol 35(2): 133–141.

    CAS  PubMed  Google Scholar 

  • Batshaw ML, Roan Y, Jung AL, Rosenberg LA, Brusilow SW (1980) Cerebral dysfunction in asymptomatic carriers of ornithine transcarbamylase deficiency. N Engl J Med 302(9): 482–485.

    Article  CAS  PubMed  Google Scholar 

  • Batshaw ML, Brusilow S, Waber L, et al (1982) Treatment of inborn errors of urea synthesis: activation of alternative pathways of waste nitrogen synthesis and excretion. N Engl J Med 306(23): 1387–1392.

    Article  CAS  PubMed  Google Scholar 

  • Batshaw ML, Hyman SL, Mellits ED, Thomas GH, DeMuro R, Coyle JT (1986) Behavioural and neurotransmitter changes in the urease-infused rat: a model of congenital hyperammonaemia. Pediatr Res 20(12): 1310–1315.

    CAS  PubMed  Google Scholar 

  • Belanger M, Desjardins P, Chatauret N, Butterworth RF (2002) Loss of expression of glial fibrillary acidic protein in acute hyperammonaemia. Neurochem Int 41(2–3): 155–160.

    CAS  PubMed  Google Scholar 

  • Belanger-Quintana A, Martinez-Pardo M, Garcia MJ, et al (2003) Hyperammonaemia as a cause of psychosis in an adolescent. Eur J Pediatr 162(11): 773–775.

    PubMed  Google Scholar 

  • Bender AS, Norenberg MD (1996) Effects of ammonia on l-glutamate uptake in cultured astrocytes. Neurochem Res 21(5): 567–573.

    CAS  PubMed  Google Scholar 

  • Bergeron M, Swain MS, Reader TA, Grondin L, Butterworth RF (1990) Effect of ammonia on brain serotonin metabolism in relation to function in the portacaval shunted rat. J Neurochem 55(1): 222–229.

    CAS  PubMed  Google Scholar 

  • Bindu PS, Sinha S, Taly AB, et al (2007) Extensive cortical magnetic resonance signal change in proximal urea cycle disorder. J Child Neurol 22(2): 238–239.

    CAS  PubMed  Google Scholar 

  • Blei AT, Olafsson S, Therrien G, Butterworth RF (1994) Ammonia-induced brain oedema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 19(6): 1437–1444.

    CAS  PubMed  Google Scholar 

  • Bogdanovic MD, Kidd D, Briddon A, Duncan JS, Land JM (2000) Late onset heterozygous ornithine transcarbamylase deficiency mimicking complex partial status epilepticus. J Neurol Neurosurg Psychiatry 69(6): 813–815.

    CAS  PubMed  Google Scholar 

  • Bourrier P, Varache N, Alquier P, et al (1988) Cerebral edema with hyperammonemia in valpromide poisoning. Manifestation in an adult, of a partial deficit in type I carbamylphosphate synthetase. Presse Med 17(39): 2063–2066.

    CAS  PubMed  Google Scholar 

  • Braissant O, Henry H, Villard AM, et al (2002) Ammonium-induced impairment of axonal growth is prevented through glial creatine. J Neurosci 22(22): 9810–9820.

    CAS  PubMed  Google Scholar 

  • Breningstall GN (1986) Neurologic syndromes in hyperammonemic disorders. Pediatr Neurol 2(5): 253–262.

    CAS  PubMed  Google Scholar 

  • Briand P, Cathelineau L (1982) Sparse-fur mutation: a model for some human ornithine transcarbamylase deficiencies. Adv Exp Med Biol 153: 185–194.

    CAS  PubMed  Google Scholar 

  • Brunquell P, Tezcan K, DiMario FJ Jr (1999) Electroencephalographic findings in ornithine transcarbamylase deficiency. J Child Neurol 14(8): 533–536.

    CAS  PubMed  Google Scholar 

  • Brusilow SW (1985) Disorders of the urea cycle. Hosp Pract (Off Ed) 20(10): 65–72.

    CAS  Google Scholar 

  • Brusilow SW, Valle DL, Batshaw M (1979) New pathways of nitrogen excretion in inborn errors of urea synthesis. Lancet 2(8140): 452–454.

    CAS  PubMed  Google Scholar 

  • Busto R, Dietrich WD, Globus MY, Valdes I, Scheinberg P, Ginsberg MD (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7(6): 729–738.

    CAS  PubMed  Google Scholar 

  • Butterworth RF (1998) Effects of hyperammonaemia on brain function. J Inherit Metab Dis 21(Supplement 1): 6–20.

    PubMed  Google Scholar 

  • Butterworth RF (2000) Hepatic encephalopathy: a neuropsychiatric disorder involving multiple neurotransmitter systems. Curr Opin Neurol 13(6): 721–727.

    CAS  PubMed  Google Scholar 

  • Butterworth RF (2001) Glutamate transporter and receptor function in disorders of ammonia metabolism. Ment Retard Dev Disabil Res Rev 7(4): 276–279.

    CAS  PubMed  Google Scholar 

  • Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17(4): 221–227.

    CAS  PubMed  Google Scholar 

  • Butterworth RF, Giguere JF, Michaud J, Lavoie J, Layrargues GP (1987) Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol 6(1–2): 1–12.

    CAS  PubMed  Google Scholar 

  • Chatauret N, Zwingmann C, Rose C, Leibfritz D, Butterworth RF (2003) Effects of hypothermia on brain glucose metabolism in acute liver failure: a H/C-nuclear magnetic resonance study. Gastroenterology 125(3): 815–824.

    CAS  PubMed  Google Scholar 

  • Chen YF, Huang YC, Liu HM, Hwu WL (2001) MRI in a case of adult-onset citrullinemia. Neuroradiology 43(10): 845–847.

    CAS  PubMed  Google Scholar 

  • Chung C, Gottstein J, Blei AT (2001) Indomethacin prevents the development of experimental ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 34(2): 249–254.

    CAS  PubMed  Google Scholar 

  • Cohn RM, Roth KS (2004) Hyperammonaemia, bane of the brain. Clin Pediatr (Phila) 43(8): 683–689.

    Google Scholar 

  • Connelly A, Cross JH, Gadian DG, Hunter JV, Kirkham FJ, Leonard JV (1993) Magnetic resonance spectroscopy shows increased brain glutamine in ornithine carbamoyl transferase deficiency. Pediatr Res 33(1): 77–81.

    CAS  PubMed  Google Scholar 

  • DeMars R, LeVan SL, Trend BL, Russell LB (1976) Abnormal ornithine carbamoyltransferase in mice having the sparse-fur mutation. Proc Natl Acad Sci USA 73(5): 1693–1697.

    CAS  PubMed  Google Scholar 

  • Dietrich WD, Busto R, Alonso O, Globus MY, Ginsberg MD (1993) Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 13(4): 541–549.

    CAS  PubMed  Google Scholar 

  • DiMagno EP, Lowe JE, Snodgrass PJ, Jones JD (1986) Ornithine transcarbamylase deficiency—a cause of bizarre behaviour in a man. N Engl J Med 315(12): 744–747.

    Article  CAS  PubMed  Google Scholar 

  • Dolman CL, Clasen RA, Dorovini-Zis K (1988) Severe cerebral damage in ornithine transcarbamylase deficiency. Clin Neuropathol 7(1): 10–15.

    CAS  PubMed  Google Scholar 

  • Eather G, Coman D, Lander C, McGill J (2006) Carbamyl phosphate synthase deficiency: diagnosed during pregnancy in a 41-year-old. J Clin Neurosci 13(6): 702–706.

    CAS  PubMed  Google Scholar 

  • Engel RC, Buist NR (1985) The EEGs of infants with citrullinemia. Dev Med Child Neurol 27(2): 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Enns GM, O’Brien WE, Kobayashi K, Shinzawa H, Pellegrino JE (2005) Postpartum “psychosis” in mild argininosuccinate synthetase deficiency. Obstet Gynecol 105(5 Pt 2): 1244–1246.

    PubMed  Google Scholar 

  • Enns GM, Berry SA, Berry GT, et al (2007) Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med 356(22): 2282–2292.

    CAS  PubMed  Google Scholar 

  • Erceg S, Monfort P, Hernández-Viadel M, et al (2005) Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatology 41(2): 299–306.

    CAS  PubMed  Google Scholar 

  • Felig DM, Brusilow SW, Boyer JL (1995) Hyperammonemic coma due to parenteral nutrition in a woman with heterozygous ornithine transcarbamylase deficiency. Gastroenterology 109(1): 282–284.

    CAS  PubMed  Google Scholar 

  • Felipo V, Butterworth RF (2002a) Neurobiology of ammonia. Prog Neurobiol 67(4): 259–279.

    CAS  PubMed  Google Scholar 

  • Felipo V, Butterworth RF (2002b) Mitochondrial dysfunction in acute hyperammonaemia. Neurochem Int 40(6): 487–491.

    CAS  Google Scholar 

  • Fitzpatrick SM, Hetherington HP, Behar KL, Shulman RG (1989) Effects of acute hyperammonaemia on cerebral amino acid metabolism and pHi in vivo, measured by 1H and 31P nuclear magnetic resonance. J Neurochem 52(3): 741–749.

    CAS  PubMed  Google Scholar 

  • Garcia MV, Lopez-Mediavilla C, Juanes de la Pena MC, Medina JM (2003) Tolerance of neonatal rat brain to acute hyperammonaemia. Brain Res 973(1): 31–38.

    CAS  PubMed  Google Scholar 

  • Gaspari R, Archangeli A, Mensi S (2003) Late-onset presentation of ornithine transcarbamylase deficiency in a young woman with hyperammonemic coma. Ann Emerg Med 41(1): 104–109.

    PubMed  Google Scholar 

  • Giguere JF, Butterworth RF (1984) Amino acid changes in regions of the CNS in relation to function in experimental portal-systemic encephalopathy. Neurochem Res 9(9): 1309–1321.

    CAS  PubMed  Google Scholar 

  • Gilchrist JM, Coleman RA (1987) Ornithine transcarbamylase deficiency: adult onset of severe symptoms. Ann Intern Med 106(4): 556–558.

    CAS  PubMed  Google Scholar 

  • Gluckman PD, Wyatt JS, Azzopardi D, et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365: 663–670.

    PubMed  Google Scholar 

  • Gordon N (2003) Ornithine transcarbamylase deficiency: a urea cycle defect. Eur J Paediatr Neurol 7(3): 115–121.

    PubMed  Google Scholar 

  • Gropman AL (2005) Expanding the diagnostic and research toolbox for inborn errors of metabolism: the role of magnetic resonance spectroscopy. Mol Genet Metab 86(1–2): 2–9.

    CAS  PubMed  Google Scholar 

  • Gropman AL, Batshaw ML (2004) Cognitive outcome in urea cycle disorders. Mol Genet Metab 81(Supplement 1): S58–S62.

    CAS  PubMed  Google Scholar 

  • Gushiken T, Yoshimura N, Saheki T (1985) Transient hyperammonaemia during aging in ornithine transcarbamylase-deficient, sparse-fur mice. Biochem Int 11(5): 637–643.

    CAS  PubMed  Google Scholar 

  • Gyato K, Wray J, Huang ZJ, Yudkoff M, Batshaw ML (2004) Metabolic and neuropsychological phenotype in women heterozygous for ornithine transcarbamylase deficiency. Ann Neurol 55(1): 80–86.

    PubMed  Google Scholar 

  • Harding BN, Leonard JV, Erdohazi M (1984) Ornithine carbamoyl transferase deficiency: a neuropathological study. Eur J Pediatr 141(4): 215–220.

    CAS  PubMed  Google Scholar 

  • Honeycutt D, Callahan K, Rutledge L, Evans B (1992) Heterozygote ornithine transcarbamylase deficiency presenting as symptomatic hyperammonaemia during initiation of valproate therapy. Neurology 42(3 Pt 1): 666–668.

    CAS  PubMed  Google Scholar 

  • Inamasu J, Ichikizaki K (2002) Mild hypothermia in neurologic emergency: an update. Ann Emerg Med 40(2): 220–230.

    PubMed  Google Scholar 

  • Itzhak Y, Roig-Cantisano A, Dombro RS (1995) Acute liver failure and hyperammonemia increase peripheral-type benzodiazepine receptor binding and pregnenolone synthesis in mouse brain. Brain Res 705(1–2): 345–348.

    CAS  PubMed  Google Scholar 

  • Izumi Y, Izumi M, Matsukawa M, Funatsu M, Zorumski CF (2005) Ammonia-mediated LTP inhibition: effects of NMDA receptor antagonists and l-carnitine. Neurobiol Dis 20(2): 615–624.

    CAS  PubMed  Google Scholar 

  • Jalan R, Olde Damink SW, Deutz NE, Hayes PC, Lee A (2004) Moderate hypothermia in patients with acute liver failure and uncontrolled intracranial hypertension. Gastroenterology 127(5): 1338–1346.

    CAS  PubMed  Google Scholar 

  • Jayakumar AR, Rao KV, Murthy ChR, Norenberg MD (2006) Glutamine in the mechanism of ammonia-induced astrocyte swelling. Neurochem Int 48(6–7): 623–628.

    CAS  PubMed  Google Scholar 

  • Kanamori K, Ross BD (1993) 15N n.m.r. measurement of the in vivo rate of glutamine synthesis and utilization at steady state in the brain of the hyperammonaemic rat. Biochem J 293(Pt 2): 461–468.

    CAS  PubMed  Google Scholar 

  • Kanamori K, Ross BD (1995) In vivo activity of glutaminase in the brain of hyperammonaemic rats measured by 15N nuclear magnetic resonance. Biochem J 305(Pt 1): 329–336.

    CAS  PubMed  Google Scholar 

  • Kanamori K, Ross BD (2006) Kinetics of glial glutamine efflux and the mechanism of neuronal uptake studied in vivo in mildly hyperammonemic rat brain. J Neurochem 99(4): 1103–1113.

    CAS  PubMed  Google Scholar 

  • Kanamori K, Ross BD, Chung JC, Kuo EL (1996) Severity of hyperammonemic encephalopathy correlates with brain ammonia level and saturation of glutamine synthetase in vivo. J Neurochem 67(4): 1584–1594.

    Article  CAS  PubMed  Google Scholar 

  • Kanamori K, Bluml S, Ross B (1997) Magnetic resonance spectroscopy in the study of hyperammonaemia and hepatic encephalopathy. Adv Exp Med Biol 420: 185–194.

    CAS  PubMed  Google Scholar 

  • Kornfeld M, Woodfin BM, Papile L, Davis LE, Bernard LR (1985) Neuropathology of ornithine carbamyl transferase deficiency. Acta Neuropathol (Berl) 65(3–4): 261–264.

    CAS  Google Scholar 

  • Kosenko E, Llansola M, Montoliu C, et al (2003) Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43(4–5): 493–499.

    CAS  PubMed  Google Scholar 

  • Kreis R, Ross BD, Farrow NA, Ackerman Z (1992) Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-1 MR spectroscopy. Radiology 182(1): 19–27.

    CAS  PubMed  Google Scholar 

  • Leao M (1995) Valproate as a cause of hyperammonaemia in heterozygotes with ornithine-transcarbamylase deficiency. Neurology 45(3 Pt 1): 593–594.

    CAS  PubMed  Google Scholar 

  • Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5(2): 160–170.

    CAS  PubMed  Google Scholar 

  • Llansola M, Rodrigo R, Monfort P, et al (2007) NMDA receptors in hyperammonemia and hepatic encephalopathy. Metab Brain Dis Aug 15. [Epub ahead of print].

  • Loihl AK, Asensio V, Campbell IL, Murphy S (1999) Expression of nitric oxide synthase (NOS)-2 following permanent focal ischemia and the role of nitric oxide in infarct generation in male, female and NOS-2 gene-deficient mice. Brain Res 830(1): 155–164.

    CAS  PubMed  Google Scholar 

  • Mamourian AC, du Plessis A (1991) Urea cycle defect: a case with MR and CT findings resembling infarct. Pediatr Radiol 21(8): 594–595.

    CAS  PubMed  Google Scholar 

  • Mizoguchi K, Utsunomiya H, Emoto H, Shimizu T (1990) A case of ornithine transcarbamylase deficiency with acute and late onset simulating Reye’s syndrome in an adult male. Kurume Med J 37(2): 105–109.

    CAS  PubMed  Google Scholar 

  • Monfort P, Munoz MD, Kosenko E, Felipo V (2002) Long-term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP-dependent protein kinase, and cGMP-degrading phosphodiesterase. J Neurosci 22(23): 10116–10122.

    CAS  PubMed  Google Scholar 

  • Monfort P, Munoz MD, Felipo V (2005) Molecular mechanisms of the alterations in NMDA receptor-dependent long-term potentiation in hyperammonaemia. Metab Brain Dis 20(4): 265–274.

    CAS  PubMed  Google Scholar 

  • Msall M, Batshaw ML, Suss R, Brusilow SW, Mellits ED (1984) Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea-cycle enzymopathies. N Engl J Med 310(23): 1500–1505.

    Article  CAS  PubMed  Google Scholar 

  • Msall M, Monahan PS, Chapanis N, Batshaw ML (1988) Cognitive development in children with inborn errors of urea synthesis. Acta Paediatr Jpn 30(4): 435–441.

    CAS  PubMed  Google Scholar 

  • McCullough LD, Zeng Z, Blizzard KK, et al (2005) Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab 25(4): 502–512.

    CAS  PubMed  Google Scholar 

  • Nagata N, Matsuda I, Matsuura T, et al (1991) Retrospective survey of urea cycle disorders: Part 2. Neurological outcome in forty-nine Japanese patients with urea cycle enzymopathies. Am J Med Genet 40(4): 477–481.

    CAS  PubMed  Google Scholar 

  • Natale JE, Guerguerian AM, Joseph JG, et al (2007) Pilot study to determine the hemodynamic safety and feasibility of magnesium sulfate infusion in children with severe traumatic brain injury. Pediatr Crit Care Med 8(1): 1–9.

    PubMed  Google Scholar 

  • Neary JT, Norenberg LO, Gutierrez MP, Norenberg MD (1987) Hyperammonaemia causes altered protein phosphorylation in astrocytes. Brain Res 437(1): 161–164.

    CAS  PubMed  Google Scholar 

  • Nicolaides P, Liebsch D, Dale N, Leonard J, Surtees R (2002) Neurological outcome of patients with ornithine carbamoyltransferase deficiency. Arch Dis Child 86(1): 54–56.

    CAS  PubMed  Google Scholar 

  • Norenberg MD (1996) Astrocytic-ammonia interactions in hepatic encephalopathy. Semin Liver Dis 16(3): 245–253.

    CAS  PubMed  Google Scholar 

  • Norenberg MD, Bender AS (1994) Astrocyte swelling in liver failure: role of glutamine and benzodiazepines. Acta Neurochir Suppl (Wien) 60: 24–27.

    CAS  Google Scholar 

  • Norenberg MD, Rao KV, Jayakumar AR (2005) Mechanisms of ammonia-induced astrocyte swelling. Metab Brain Dis 20(4): 303–318.

    CAS  PubMed  Google Scholar 

  • Oechsner M, Steen C, Sturenburg HJ, Kohlschutter A (1998) Hyperammonaemic encephalopathy after initiation of valproate therapy in unrecognised ornithine transcarbamylase deficiency. J Neurol Neurosurg Psychiatry 64(5): 680–682.

    CAS  PubMed  Google Scholar 

  • Ott P, Clemmesen O, Larsen FS (2005) Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonaemia to energy failure and proteolysis. Neurochem Int 47(1–2): 13–18.

    CAS  PubMed  Google Scholar 

  • Park EM, Cho S, Frys KA, et al (2004) Inducible nitric oxide synthase contributes to gender differences in ischemic brain injury. J Cereb Blood Flow Metab 26(3): 392–401.

    Google Scholar 

  • Picca S, Dionisi-Vici C, Abeni D, et al (2001) Extracorporeal dialysis in neonatal hyperammonemia: modalities and prognostic indicators. Pediatr Nephrol 16(11): 862–867.

    CAS  PubMed  Google Scholar 

  • Polderman KH (2004) Application of therapeutic hypothermia in the intensive care unit. Opportunities and pitfalls of a promising treatment modality—Part 2: Practical aspects and side effects. Intensive Care Med 30(5): 757–769.

    PubMed  Google Scholar 

  • Prasad AN, Breen JC, Ampola MG, Rosman NP (1997) Argininemia: a treatable genetic cause of progressive spastic diplegia simulating cerebral palsy: case reports and literature review. J Child Neurol 12(5): 301–309.

    Google Scholar 

  • Qureshi IA, Rao KV (1997) Sparse-fur (spf) mouse as a model of hyperammonaemia: alterations in the neurotransmitter systems. Adv Exp Med Biol 420: 143–158.

    CAS  PubMed  Google Scholar 

  • Rao VL, Audet R, Therrien G, Butterworth RF (1994) Tissue-specific alterations of binding sites for peripheral-type benzodiazepine receptor ligand [3H]PK11195 in rats following portacaval anastomosis. Dig Dis Sci 39(5): 1055–1063.

    CAS  PubMed  Google Scholar 

  • Ratnakumari L, Qureshi IA, Butterworth RF (1994) Regional amino acid neurotransmitter changes in brains of spf/Y mice with congenital ornithine transcarbamylase deficiency. Metab Brain Dis 9(1): 43–51.

    CAS  PubMed  Google Scholar 

  • Reith J, Jorgensen HS, Pedersen PM, et al (1996) Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet 347(8999): 422–425.

    CAS  PubMed  Google Scholar 

  • Rimbaux S, Hommet C, Perrier D, et al (2004) Adult onset ornithine transcarbamylase deficiency: an unusual cause of semantic disorders. J Neurol Neurosurg Psychiatry 75(7): 1073–1075.

    CAS  PubMed  Google Scholar 

  • Robinson MB, Hopkins K, Batshaw ML, McLaughlin BA, Heyes MP, Oster-Granite ML (1995) Evidence of excitotoxicity in the brain of the ornithine carbamoyltransferase deficient sparse fur mouse. Brain Res Dev Brain Res 90(1–2): 35–44.

    CAS  PubMed  Google Scholar 

  • Rodrigo R, Felipo V (2006) Brain regional alterations in the modulation of the glutamate-nitric oxide-cGMP pathway in liver cirrhosis. Role of hyperammonaemia and cell types involved. Neurochem Int 48(6–7): 472–477.

    CAS  PubMed  Google Scholar 

  • Rogers E, Wagner AK (2006) Gender, sex steroids, and neuroprotection following traumatic brain injury. J Head Trauma Rehabil 21(3): 279–281.

    PubMed  Google Scholar 

  • Scaglia F, Brunetti-Pierri N, S Kleppe, et al (2004) Clinical consequences of urea cycle enzyme deficiencies and potential links to arginine and nitric oxide metabolism. J Nutr 134: 2775S–2782S.

    CAS  PubMed  Google Scholar 

  • Shankaran S, Laptook AR, Ehrenkranz RA, et al (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353(15): 1574–1584.

    CAS  PubMed  Google Scholar 

  • Shawcross D, Jalan R (2005) The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation. Cell Mol Life Sci 62(19–20): 2295–2304.

    CAS  PubMed  Google Scholar 

  • Shen J, Sibson NR, Cline G, Behar KL, Rothman DL, Shulman RG (1998) 15N-NMR spectroscopy studies of ammonia transport and glutamine synthesis in the hyperammonemic rat brain. Dev Neurosci 20(4–5): 434–443.

    CAS  PubMed  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Behar KL, Rothman DL, Shulman RG (1997) In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate–glutamine cycling. Proc Natl Acad Sci USA 94(6): 2699–2704.

    CAS  PubMed  Google Scholar 

  • Slotboom J (2007) Localized therapeutic hypothermia in the brain for the treatment of ischaemic stroke. J Appl Physiol 102(4): 1303–1304.

    CAS  PubMed  Google Scholar 

  • Smith W, Kishnani PS, Lee B, et al (2005) Urea cycle disorders: clinical presentation outside the newborn period. Crit Care Clin 21(4 Supplement): S9–S17.

    PubMed  Google Scholar 

  • Spector EB, Mazzocchi RA (1983) The sparse fur mouse: an animal model for a human inborn error of metabolism of the urea cycle. Prog Clin Biol Res 127: 85–96.

    CAS  PubMed  Google Scholar 

  • Summar ML, Gargosky S, Brusilow S, Lee B (2007) Descriptions and outcomes of 316 patients with urea cycle disorders from a 21-year, multicentre study of acute hyperammonaemic episodes. [Manuscript in review].

  • Swillen A, Vandeputte L, Cracco J, et al (1999) Neuropsychological, learning and psychosocial profile of primary school aged children with the velo-cardio-facial syndrome (22q11 deletion): evidence for a nonverbal learning disability? Child Neuropsychol 5(4): 230–241.

    CAS  PubMed  Google Scholar 

  • Szerb JC, Butterworth RF (1992) Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog Neurobiol 39(2): 135–153.

    CAS  PubMed  Google Scholar 

  • Takahashi H, Koehler RC, Brusilow SW, Traystman RJ (1991) Inhibition of brain glutamine accumulation prevents cerebral oedema in hyperammonemic rats. Am J Physiol 261(3 Pt 2): H825–H829.

    CAS  PubMed  Google Scholar 

  • Takanashi J, Kurihara A, Tomita M, et al (2002) Distinctly abnormal brain metabolism in late-onset ornithine transcarbamylase deficiency. Neurology 59(2): 210–214.

    CAS  PubMed  Google Scholar 

  • Takanashi J, Barkovich AJ, Cheng SF (2003) Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. AJNR Am J Neuroradiol 24(6): 1184–1187.

    PubMed  Google Scholar 

  • Tanigami H, Rebel A, Martin LJ, et al (2005) Effect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonaemia in rats. Neuroscience 131(2): 437–449.

    CAS  PubMed  Google Scholar 

  • Tekkok SB, Goldberg MP (2001) AMPA/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci 21(12): 4237–4248.

    CAS  PubMed  Google Scholar 

  • Tekkok SB, Ye Z, Ransom BR (2007) Excitotoxic mechanisms of ischemic injury in myelinated white matter. J Cereb Blood Flow Metab 27(9): 1540–1552.

    PubMed  Google Scholar 

  • Tokatli A, Coskun T, Cataltepe S, Ozalp I (1991) Valproate-induced lethal hyperammonaemic coma in a carrier of ornithine carbamoyltransferase deficiency. J Inherit Metab Dis 14(5): 836–837.

    CAS  PubMed  Google Scholar 

  • Tripp JH, Hargreaves T, Anthony PP (1981) Sodium valproate and ornithine carbamyl transferase deficiency. Lancet 1(8230): 1165–1166.

    CAS  PubMed  Google Scholar 

  • Uchino T, Endo F, Matsuda I (1998) Neurodevelopmental outcome of long-term therapy of urea cycle disorders in Japan. J Inherit Metab Dis 21(Supplement 1): 151–159.

    PubMed  Google Scholar 

  • Vaquero J, Blei AT (2005) Mild hypothermia for acute liver failure: a review of mechanisms of action. J Clin Gastroenterol 39(4 Supplement 2): S147–S157.

    PubMed  Google Scholar 

  • Vaquero J, Rose C, Butterworth RF (2005) Keeping cool in acute liver failure: rationale for the use of mild hypothermia. J Hepatol 43(6): 1067–1077.

    CAS  PubMed  Google Scholar 

  • Veres G, Gibbs RA, Scherer SE, Caskey CT (1987) The molecular basis of the sparse fur mouse mutation. Science 237(4813): 415–417.

    CAS  PubMed  Google Scholar 

  • Verma NP, Hart ZH, Kooi KA (1984) Electroencephalographic findings in urea-cycle disorders. Electroencephalogr Clin Neurophysiol 57(2): 105–112.

    CAS  PubMed  Google Scholar 

  • Volbracht C, van Beek J, Zhu C, Blomgren K, Leist M (2006) Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity. Eur J Neurosci 23(10): 2611–2622.

    PubMed  Google Scholar 

  • Wang JY, Wen LL, Huang YN, Chen YT, Ku MC (2006) Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des 12(27): 3521–3533.

    CAS  PubMed  Google Scholar 

  • Welsh FA, Sims RE, Harris VA (1990) Mild hypothermia prevents ischemic injury in gerbil hippocampus. J Cereb Blood Flow Metab 10(4): 557–563.

    CAS  PubMed  Google Scholar 

  • Whitelaw A, Bridges S, Leaf A, Evans D (2001) Emergency treatment of neonatal hyperammonaemic coma with mild systemic hypothermia. Lancet 358(9275): 36–38.

    CAS  PubMed  Google Scholar 

  • Yamori Y, Horie R, Handa H, et al (1976) Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke 7(1): 46–53.

    CAS  PubMed  Google Scholar 

  • Zwingmann C, Chatauret N, Rose C, Leibfritz D, Butterworth RF (2004) Selective alterations of brain osmolytes in acute liver failure: protective effect of mild hypothermia. Brain Res 999(1): 118–123.

    CAS  PubMed  Google Scholar 

  • Zwingmann C, Butterworth R (2005) An update on the role of brain glutamine synthesis and its relation to cell-specific energy metabolism in the hyperammonemic brain: further studies using NMR spectroscopy. Neurochem Int 47(1–2): 19–30.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

My thanks go to the many mentors during this project including Drs Marshall Summar, Brian Ross, Mendel Tuchman and Mark Batshaw. A. L. G. is supported by an NCRR career development award K12RR17613.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Gropman.

Additional information

Communicating editor: Johannes Zschocke

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gropman, A.L., Summar, M. & Leonard, J.V. Neurological implications of urea cycle disorders. J Inherit Metab Dis 30, 865–879 (2007). https://doi.org/10.1007/s10545-007-0709-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-007-0709-5

Keywords

Navigation