Skip to main content
Log in

Marrow stromal cells from patients affected by MPS I differentially support haematopoietic progenitor cell development

  • Published:
Journal of Inherited Metabolic Disease

Summary

Bone marrow transplantation is the therapy of choice in patients affected by MPS I (Hurler syndrome), but a high incidence of rejection limits the success of this treatment. The deficiency of α-L-iduronidase (EC 1.2.3.76), one of the enzymes responsible for the degradation of glycosaminoglycans, results in accumulation of heparan and dermatan sulphate in these patients. Heparan sulphate and dermatan sulphate are known to be important components of the bone marrow microenvironment and critical for haematopoietic cell development. In this study we compared the ability of marrow stromal cells from MPS I patients and healthy donors to support normal haematopoiesis in Dexter-type long term culture. We found an inverse stroma/supernatant ratio in the number of clonogenic progenitors, particularly the colony-forming unit granulocyte–machrophage in MPS I cultures when compared to normal controls. No alteration in the adhesion of haematopoietic cells to the stroma of MPS I patients was found, suggesting that the altered distribution in the number of clonogenic progenitors is probably the result of an accelerated process of differentiation and maturation. The use of α-L-iduronidase gene-corrected marrow stromal cells re-established normal haematopoiesis in culture, suggesting that correction of the bone marrow microenvironment with competent enzyme prior to transplantation might help establishment of donor haematopoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baxter MA, Wynn RF, Deakin JA, et al (2002) Retrovirally mediated correction of bone marrow-derived mesenchymal stem cells from patients with mucopolysaccharidosis type I. Blood 99: 1857–1859.

    Article  PubMed  Google Scholar 

  • Bianco P, Gehron Robey P (2000) Marrow stromal stem cells. J Clin Invest 105: 1663–1668.

    CAS  PubMed  Google Scholar 

  • Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64: 278–294.

    Article  CAS  PubMed  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW, et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841–846.

    Article  CAS  PubMed  Google Scholar 

  • Campagnoli C, Bellantuono I, Kumar S, Fairbairn LJ, Roberts I, Fisk NM (2002) High transduction efficiency of circulating first trimester fetal mesenchymal stem cells: potential targets for in utero ex vivo gene therapy. BJOG 109: 952–954.

    PubMed  Google Scholar 

  • Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98: 2396–2402.

    Article  CAS  PubMed  Google Scholar 

  • Clark BR, Gallagher JT, Dexter TM (1992) Cell adhesion in the stromal regulation of haematopoiesis. Baillières Clin Haematol 5: 619–652.

    CAS  PubMed  Google Scholar 

  • Fairbairn LJ, Lashford LS, Spooncer E, et al (1996) Long-term in vitro correction of alpha-L-iduronidase deficiency (Hurler syndrome) in human bone marrow. Proc Natl Acad Sci USA 93: 2025–2030.

    Article  CAS  PubMed  Google Scholar 

  • Gordon MY, Lewis JL, Grand FH, Marley SB, Goldman JM (1996) Phenotype and progeny of primitive adherent human hematopoietic progenitors. Leukemia 10: 1347–1353.

    CAS  PubMed  Google Scholar 

  • Gupta P, Oegema TR Jr, Brazil JJ, Dudek AZ, Slungaard A, Verfaillie CM (2000) Human LTC-IC can be maintained for at least 5 weeks in vitro when interleukin-3 and a single chemokine are combined with O-sulfated heparan sulfates: requirement for optimal binding interactions of heparan sulfate with early-acting cytokines and matrix proteins. Blood 95: 147–155.

    CAS  PubMed  Google Scholar 

  • Hinek A, Wilson SE (2000) Impaired elastogenesis in Hurler disease: dermatan sulfate accumulation linked to deficiency in elastin-binding protein and elastic fiber assembly. Am J Pathol 156: 925–938.

    CAS  PubMed  Google Scholar 

  • Hobbs JR, Hugh-Jones K, Barrett AJ, et al (1981) Reversal of clinical features of Hurler's disease and biochemical improvement after treatment by bone-marrow transplantation. Lancet 2: 709–712.

    CAS  PubMed  Google Scholar 

  • Hofling AA, Vogler C, Creer MH, Sands MS (2003) Engraftment of human CD34+ cells leads to widespread distribution of donor-derived cells and correction of tissue pathology in a novel murine xenotransplantation model of lysosomal storage disease. Blood 101: 2054–2063.

    Article  CAS  PubMed  Google Scholar 

  • Hurley RW, McCarthy JB, Verfaillie CM (1995) Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation. J Clin Invest 96: 511–519.

    CAS  PubMed  Google Scholar 

  • Kodaira Y, Nair SK, Wrenshall LE, Gilboa E, Platt JL (2000) Phenotypic and functional maturation of dendritic cells mediated by heparan sulfate. J Immunol 165: 1599–1604.

    CAS  PubMed  Google Scholar 

  • Na Nakorn T, Traver D, Weissman IL, Akashi K (2002) Myeloerythroid-restricted progenitors are sufficient to confer radioprotection and provide the majority of day 8 CFU-S. J Clin Invest 109: 1579–1585.

    Article  PubMed  Google Scholar 

  • Nuttall JD, Brumfield LK, Fazzalari NL, Hopwood JJ, Byers S (1999) Histomorphometric analysis of the tibial growth plate in a feline model of mucopolysaccharidosis type VI. Calcif Tissue Int 65: 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Nelson MS, Reyes M, et al (2005) Functional abnormalities of heparan sulfate in mucopolysaccharidosis-I are associated with defective biological activity of FGF-2 on human multipotent progenitor cells. Blood 106(6): 1956–1964.

    Article  CAS  PubMed  Google Scholar 

  • Peters C, Balthazor M, Shapiro EG, et al (1996) Outcome of unrelated donor bone marrow transplantation in 40 children with Hurler syndrome. Blood 87: 4894–4902.

    CAS  PubMed  Google Scholar 

  • Peters C, Shapiro EG, Anderson J, et al (1998) Hurler syndrome: II. Outcome of HLA-genotypically identical sibling and HLA-haploidentical related donor bone marrow transplantation in fifty-four children. The Storage Disease Collaborative Study Group. Blood 91: 2601–2608.

    CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Ramsay SL, Meikle PJ, Hopwood JJ (2003) Determination of monosaccharides and disaccharides in mucopolysaccharidoses patients by electrospray ionisation mass spectrometry. Mol Genet Metab 78: 193–204.

    Article  CAS  PubMed  Google Scholar 

  • Siczkowski M, Clarke D, Gordon MY (1992) Binding of primitive hematopoietic progenitor cells to marrow stromal cells involves heparan sulfate. Blood 80: 912–919.

    CAS  PubMed  Google Scholar 

  • Termeer CC, Hennies J, Voith U, et al (2000) Oligosaccharides of hyaluronan are potent activators of dendritic cells. J Immunol 165: 1863–1870.

    CAS  PubMed  Google Scholar 

  • Toogood IR, Dexter TM, Allen TD, Suda T, Lajtha LG (1980) The development of a liquid culture system for the growth of human bone marrow. Leuk Res 4: 449–461.

    Article  CAS  PubMed  Google Scholar 

  • Vellodi A, Young EP, Cooper A, et al (1997) Bone marrow transplantation for mucopolysaccharidosis type I: experience of two British centres. Arch Dis Child 76: 92–99.

    CAS  PubMed  Google Scholar 

  • Verfaillie CM, Benis A, Iida J, McGlave PB, McCarthy JB (1994) Adhesion of committed human hematopoietic progenitors to synthetic peptides from the C-terminal heparin-binding domain of fibronectin: cooperation between the integrin alpha 4 beta 1 and the CD44 adhesion receptor. Blood 84: 1802–1811.

    CAS  PubMed  Google Scholar 

  • Whitley CB, Ramsay NK, Kersey JH, Krivit W (1986) Bone marrow transplantation for Hurler syndrome: assessment of metabolic correction. Birth Defects Orig Artic Ser 22: 7–24.

    CAS  PubMed  Google Scholar 

  • Zhang J, Niu C, Ye L, et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836–841.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bellantuono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, M.A., Wynn, R.F., Schyma, L. et al. Marrow stromal cells from patients affected by MPS I differentially support haematopoietic progenitor cell development. J Inherit Metab Dis 28, 1045–1053 (2005). https://doi.org/10.1007/s10545-005-0136-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-005-0136-4

Keywords

Navigation