Skip to main content
Log in

Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder

  • Published:
Journal of Inherited Metabolic Disease

Summary

Congenital disorders of glycosylation (CDG) represent a group of inherited multiorgan diseases caused by defects in the biosynthesis of glycoproteins. We report on two dysmorphic siblings with severe liver disease who died at the age of a few weeks. Increased activities of lysosomal enzymes in plasma were found, though total sialic acid in plasma was strongly decreased. Isoelectric focusing of serum sialotransferrins showed a type 2-like CDG pattern. Some of the known CDG subtypes were excluded. O-Glycosylation was investigated by isoelectric focusing of apolipoprotein C-III, which showed increased fractions of hyposialylated isoforms. In a consecutive study a defect in the conserved oligomeric Golgi complex was established at the level of subunit COG-7, leading to disruption of multiple glycosylation functions of the Golgi. This report on patients with a new variant of CDG, due to a multiple Golgi defect, emphasizes in addition to sialotransferrins the importance of analysis of a serum O-linked glycoprotein, e.g. apolipoprotein C-III, in unclassified CDG-X cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barone R, Carchon H, Jansen E, et al (1998) Lysosomal enzyme activities in serum and leukocytes from patients with carbohydrate-deficient glycoprotein syndrome type IA (phosphomannomutase deficiency). J Inherit Metab Dis 21: 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Beltran-Valero de Bernabé D, Currier S, Steinbrecher A, et al (2002) Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker–Warburg syndrome. Am J Hum Genet 71: 1033–1043.

    PubMed  Google Scholar 

  • Cantor AB, Baranski TJ, Kornfeld S (1992) Lysosomal enzyme phosphorylation. II. Protein recognition determinants in either lobe of procathepsin D are sufficient for phosphorylation of both the amino and carboxyl lobe oligosaccharides. J Biol Chem 267: 23349–23356.

    PubMed  CAS  Google Scholar 

  • Chantret I, Dancourt J, Dupre T, et al (2003) A deficiency in dolichyl-P-glucose:Glc1 Man9GlcNAc2-PP-dolichyl alpha3-glucosyltransferase defines a new subtype of congenital disorders of glycosylation. J Biol Chem 278: 9962–9971.

    Article  PubMed  CAS  Google Scholar 

  • de Koning TJ, Borland L, van Diggelen OP, et al (1998) A novel disorder of N-glycosylation due to phosphomannose isomerase deficiency. Biochem Biophys Res Commun 245: 38–42.

    PubMed  CAS  Google Scholar 

  • De Praeter CM, Gerwig GJ, Bause E, et al (2000) A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet 66: 1744–1756.

    Article  PubMed  CAS  Google Scholar 

  • Frank CG, Grubenmann CE, Eyaid W, Berger EG, Aebi M, Hennet T (2004) Identification and functional analysis of a defect in the human ALG9 gene: definition of congenital disorder of glycosylation type IL. Am J Hum Genet 75: 146–150.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Griffith J, Geuze HJ, Kornfeld S (2003) Mammalian GGAs act together to sort mannose 6-phosphate receptors. J Cell Biol 163: 755–766.

    Article  PubMed  CAS  Google Scholar 

  • Grubenmann CE, Frank CG, Hulsmeier AJ, et al (2004) Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik. Hum Mol Genet 13: 535–542.

    Article  PubMed  CAS  Google Scholar 

  • Grunewald S, Imbach T, Huijben K, et al (2000) Clinical and biochemical characteristics of congenital disorder of glycosylation type Ic, the first recognized endoplasmic reticulum defect in N-glycan synthesis. Ann Neurol 47: 776–781.

    PubMed  CAS  Google Scholar 

  • Hanßke B, Thiel C, Lubke T, et al (2002) Deficiency of UDP-galactose:N-acetylglucosamine beta-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId. J Clin Invest 109: 725–733.

    PubMed  Google Scholar 

  • Hayakawa K, De Felice C, Watanabe T (1993) Determination of free N-acetylneuraminic acid in human body fluids by high-performance liquid chromatography with fluorimetric detection. J Chromatogr 620: 25–31.

    PubMed  CAS  Google Scholar 

  • Imbach T, Schenk B, Schollen E, et al (2000) Deficiency of dolichol-phosphate-mannose synthase-1 causes congenital disorder of glycosylation type Ie. Clin Invest 105: 233–239.

    CAS  Google Scholar 

  • Jaeken J (2003) Komrower Lecture. Congenital disorders of glycosylation (CDG): It’s all in it! J Inherit Metab Dis 26: 99–118.

    Article  PubMed  CAS  Google Scholar 

  • Jaeken J, De Cock P, Stibler H, et al (1993) Carbohydrate-deficient glycoprotein syndrome type II. J Inherit Metab Dis 16: 1041.

    PubMed  CAS  Google Scholar 

  • Jaeken J, Kint J, Spaapen L (1992) Serum lysosomal enzyme abnormalities in galactosaemia. Lancet 340: 1472–1473.

    Article  PubMed  CAS  Google Scholar 

  • Jaeken J, Schachter H, Carchon H, De Cock P, Coddeville B, Spik G (1994) Carbohydrate deficient glycoprotein syndrome type II: a deficiency in Golgi localised N-acetyl-glucosaminyltransferase II. Arch Dis Child 71: 123–127.

    Article  PubMed  CAS  Google Scholar 

  • Korner C, Knauer R, Stephani U, Marquardt T, Lehle L, von Figura K (1999). Carbohydrate deficient glycoprotein syndrome type IV: deficiency of dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase. EMBO J 18: 6816–6822.

    Article  PubMed  CAS  Google Scholar 

  • Kranz C, Denecke J, Lehrman MA, et al (2001) A mutation in the human MPDU1 gene causes congenital disorder of glycosylation type If (CDG-If). J Clin Invest 108: 1613–1619.

    Article  PubMed  CAS  Google Scholar 

  • Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K (1998) The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem 273: 26265–26268.

    Article  PubMed  CAS  Google Scholar 

  • Lubke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Korner C (2001) Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nature Genetics 28: 73–76.

    PubMed  CAS  Google Scholar 

  • Marquardt T, Denecke J (2003) Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur J Pediatr 162: 359–379.

    PubMed  CAS  Google Scholar 

  • Quentin E, Gladen A, Roden L, Kresse H (1990) A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc Natl Acad Sci USA 87: 1342–1346.

    PubMed  CAS  Google Scholar 

  • Thiel C, Schwarz M, Hasilik M, et al (2002) Deficiency of dolichyl-P-Man:Man7GlcNAc2-PP-dolichyl mannosyltransferase causes congenital disorder of glycosylation type Ig. Biochem J 367: 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Thiel C, Schwarz M, Peng J, et al (2003) A new type of congenital disorders of glycosylation (CDG-Ii) provides new insights into the early steps of dolichol-linked oligosaccharide biosynthesis. Biol Chem 278: 22498–22505.

    CAS  Google Scholar 

  • Ungar D, Oka T, Brittle EE, et al (2002) Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. Cell Biol 157: 405–415.

    CAS  Google Scholar 

  • Van Eijk HG, van Noort WL, Kroos MJ, van der Heul C (1982) The heterogeneity of human serum transferrin and human transferrin preparations on isoelectric focusing gels; no functional difference of the fractions in vitro. Clin Chim Acta 121: 209–216.

    PubMed  CAS  Google Scholar 

  • Van Schaftingen E, Jaeken J (1995) Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett 377: 318–320.

    Article  PubMed  CAS  Google Scholar 

  • Wopereis S, Grunewald S, Morava E, et al (2003) Apolipoprotein C-III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin Chem 49: 1839–1845.

    PubMed  CAS  Google Scholar 

  • Wu X, Rush JS, Karaoglu D, et al (2003) Deficiency of UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1 phosphate transferase (DPAGT1) causes a novel congenital disorder of glycosylation type Ij. Hum Mutat 22: 144–150.

    PubMed  CAS  Google Scholar 

  • Wu X, Steet RA, Bohorov O, et al (2004) Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nature Medicine 10: 518–523.

    PubMed  CAS  Google Scholar 

  • Yoshida A, Kobayashi K, Manya H, et al (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 1: 717–724.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. M. Spaapen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spaapen, L.J.M., Bakker, J.A., van der Meer, S.B. et al. Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder. J Inherit Metab Dis 28, 707–714 (2005). https://doi.org/10.1007/s10545-005-0015-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-005-0015-z

Keywords

Navigation