Skip to main content

Advertisement

Log in

Cell viability and cytotoxicity of inkjet-printed flexible organic electrodes on parylene C

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This study reports on the fabrication of biocompatible organic devices by means of inkjet printing with a novel combination of materials. The devices were fabricated on Parylene C (PaC), a biocompatible and flexible polymer substrate. The contact tracks were inkjet-printed using a silver nanoparticle ink, while the active sites were inkjet-printed using a poly (3,4ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) solution. To insulate the final device, a polyimide ink was used to print a thick film, leaving small open windows upon the active sites. Electrical characterization of the final device revealed conductivities in the order of 103 and 102 S.cm−1 for Ag and PEDOT based inks, respectively. Cell adhesion assays performed with PC-12 cells after 96 h of culture, and B16F10 cells after 24 h of culture, demonstrated that the cells adhered on top of the inks and cell differentiation occurred, which indicates Polyimide and PEDOT:PSS inks are non-toxic to these cells. The results indicate that PaC, along with its surface-treated variants, is a potentially useful material for fabricating cell-based microdevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • S. Abdulghani, P.G. Morouço, Biofabrication for osteochondral tissue regeneration: Bioink printability requirements. J. Mater. Sci. Mater. Med. 30, 1–13 (2019)

    Article  Google Scholar 

  • M.R. Abidian, J.M. Corey, D.R. Kipke, D.C. Martin, Conducting-polymer nanotubes improve electrical properties mechanical adhesion neural attachment and neurite outgrowth of neural electrodes. Small 6(3), 421–429 (2010)

    Article  Google Scholar 

  • M.R. Abidian, D.C. Martin, Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29, 1273–1283 (2008)

    Article  Google Scholar 

  • Adly N, Weidlich S, Seyock S, Brings F, Yakushenko A, Offenhäusser A, Wolfrum B. Printed microelectrode arrays on soft materials: from PDMS to hydrogels. npj Flex. Electron. 2018;2:15

  • M. Asplund, T. Nyberg, O. Inganäs, Electroactive polymers for neural interfaces. Polym. Chem. 1, 1374–1391 (2010)

    Article  Google Scholar 

  • A. Blau, A. Murr, S. Wolff, E. Sernagor, P. Medini, G. Iurilli, C. Ziegler, F. Benfenati, Flexible all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 32, 1778–1786 (2011)

    Article  Google Scholar 

  • E. Bystrenova, M. Jelitai, I. Tonazzini, A.N. Lazar, M. Huth, P. Stoliar, C. Dionigi, M.G. Cacace, B. Nickel, E. Madarasz, F. Biscarini, Neural networks grown on organic semiconductors. Adv. Funct. Mater. 18(12), 1751–1756 (2008)

    Article  Google Scholar 

  • T.Y. Chang, V.G. Yadav, S.D. Leo, A. Mohedas, B. Rajalingam, C.-L. Chen, S. Selvarasah, M.R. Dokmeci, A. Khademhosseini, Cell and protein compatibility of Parylene-C surfaces. Langmuir 23(23), 11718–11725 (2007)

    Article  Google Scholar 

  • X. Cui, D.C. Martin, Electrochemical deposition and characterization of poly(3,4- ethylenedioxythiophene) on neural microelectrode arrays. Sensors Actuators B 89, 92–102 (2003)

    Article  Google Scholar 

  • N. De la Oliva, M. Mueller, T. Stieglitz, X. Navarro, J. del Valle, On the use of Parylene C polymer as substrate for peripheral nerve electrodes. Sci. Rep. 8, 5965 (2018)

    Article  Google Scholar 

  • R.D. Deegan, Pattern formation in drying drops. Phys. Rev. E Stat .Phys. Plasmas Fluids Relat. Interdiscip. Topics 61, 475–485 (2000)

    Google Scholar 

  • M.C. Demirel, E. So, T.M. Ritty, S.H. Naidu, A. Lakhtakia, Fibroblast cell attachment and growth on nanoengineered sculptured thin films. J Biomed Mater Res Part B 81(1), 219–223 (2007)

    Article  Google Scholar 

  • A. Denneulin, A. Blayo, C. Neuman, J. Bras, Infra-red assisted sintering of inkjet printed silver tracks on paper substrates. J. Nanopart. Res. 13, 3815–3823 (2011)

    Article  Google Scholar 

  • M. ElMahmoudy, A.M. Charrier, G.G. Malliaras, S. Sanaur, Facile nanopatterning of PEDOT:PSS thin films. Adv. Mater. Technol. 3, 1700344 (2018)

    Article  Google Scholar 

  • M. ElMahmoudy, V.F. Curto, M. Ferro, A. Hama, G.G. Malliaras, R.P. O'Connor, S. Sanaur, Electrically controlled cellular migration on a periodically micropatterned PEDOT:PSS conducting polymer platform. J. Appl. Polym. Sci. 136, 47029 (2019)

    Article  Google Scholar 

  • F. Fallegger, G. Schiavone, Lacour. SP. Conformable Hybrid Systems for Implantable Bioelectronic Interfaces. Adv. Mater. 32, 1903904 (2020)

    Google Scholar 

  • I.J. Fernandes, A.F. Aroche, A. Schuck, P. Lamberty, C.R. Peter, W. Hasenkamp, T.L.A.C. Rocha, Silver nanoparticle conductive inks: Synthesis, characterization, and fabrication of inkjet-printed flexible electrodes. Sci. Rep. 10, 878 (2020)

    Article  Google Scholar 

  • S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)

    Article  Google Scholar 

  • A.P. Gerratt, H.O. Michaud, S.P. Lacour, Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 25, 2287–2295 (2015)

    Article  Google Scholar 

  • R.A. Green, N.H. Lovell, L.A. Poole-Warren, Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomaterials 30, 3637–3644 (2009)

    Article  Google Scholar 

  • N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32, 876–921 (2007)

    Article  Google Scholar 

  • F.K. Hansen, The Measurement of Surface Energy of Polymers by Means of Contact Angles of Liquids on Solid Surfaces - a Short Overview of Frequently Used Methods (University of Oslo, 2004)

  • T.J.J. Hondrich, B. Lenyk, P. Shokoohimehr, D. Kireev, V. Maybeck, D. Mayer, A. Offenhäusser, MEA recordings and cell–substrate investigations with Plasmonic and transparent, tunable holey gold. ACS Appl. Mater. Inter. 11, 46451–46461 (2019)

    Article  Google Scholar 

  • J. Isaksson, P. Kjall, D. Nilsson, N.D. Robinson, M. Berggren, A. Richter-Dahlfors, Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. 6(9), 673–679 (2007)

    Article  Google Scholar 

  • J. Kettle, T. Lamminmäki, P. Gane, A review of modified surfaces for high speed inkjet coating. Surf. Coat. Tech. 204, 2103–2109 (2010)

    Article  Google Scholar 

  • D. Khodagholy, T. Doublet, M. Gurfinkel, P. Quilichini, E. Ismailova, P. Leleux, T. Herve, S. Sanaur, C. Bernard, G.G. Malliaras, Highly conformable conducting polymer electrodes for In Vivo recordings. Adv. Mater. 23, H268–H272 (2011)

    Article  Google Scholar 

  • D. Khodagholy, T. Doublet, P. Quilichini, M. Gurfinkel, P. Leleux, A. Ghestem, E. Ismailova, T. Hervé, S. Sanaur, C. Bernard, G.G. Malliaras, In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013)

    Article  Google Scholar 

  • B.J. Kim, E. Meng, Micromachining of Parylene C for bioMEMS. Polym. Adv. Technol. 27, 564–576 (2016)

    Article  Google Scholar 

  • D.-H. Kim, S. Richardson-Burns, L. Povlich, M.R. Abidian, S. Spanninga, J. Hendricks, D.C. Martin, in Indwelling Neural Implants: Strategies for Contending with the In-Vivo Environment, ed. by W. M. Reichert. (CRC Press Taylor Francis, Boca Raton FL, 2008), p. 271

    Google Scholar 

  • S. Lacour, G. Courtine, J. Guck, Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016)

    Article  Google Scholar 

  • J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B.D. Michael, Y. Wang, Study on hydrophilicity of polymer surfaces improved by plasma treatment. Appl Surf Science 252(10), 3375–3379 (2006)

    Article  Google Scholar 

  • Z. Liu, Y. Su, K. Varahramyan, Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers. Thin Solid Films 478(1–2), 275–279 (2005)

    Article  Google Scholar 

  • K.A. Ludwig, J.D. Uram, J. Yang, D.C. Martin, D.R. Kipke, Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4- ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 3, 59–70 (2006)

    Article  Google Scholar 

  • G.G. Malliaras, R.H. Friend, An organic electronics primer. Phys. Today 58, 53–58 (2005)

    Article  Google Scholar 

  • D. Müller, C.R. Rambo, D.O.S. Recouvreux, L.M. Porto, G.M.O. Barra, Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth. Met. 161, 106–111 (2011)

    Article  Google Scholar 

  • T. Nyberg, A. Shimada, K. Torimitsu, Ion conducting polymer microelectrodes for interfacing with neural networks. J Neurosci Meth. 160, 16–25 (2007)

    Article  Google Scholar 

  • R. Owens, G. Malliaras, Organic electronics at the Interface with biology. MRS Bull. 35, 449–456 (2010)

    Article  Google Scholar 

  • B.D. Paulsen, K. Tybrandt, E. Stavrinidou, et al., Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020)

    Article  Google Scholar 

  • L. Poole-Warren, N. Lovell, S. Baek, R. Green, Development of bioactive conducting polymers for neural interfaces. Expert Rev Med Devices 7(1), 35–49 (2010)

    Article  Google Scholar 

  • T. Roberts, J.B. De Graaf, C. Nicol, T. Hervé, M. Fiocchi, S. Sanaur, Flexible inkjet-printed multielectrode arrays for neuromuscular cartography. Adv. Healthcare Mater. 5, 1462–1470 (2016)

    Article  Google Scholar 

  • M. Shur, F. Fallegger, E. Pirondini, A. Roux, A. Bichat, Q. Barraud, G. Courtine, S.P. Lacour, Soft printable electrode coating for neural interfaces. ACS Appl. Bio Mater. 3, 4388–4397 (2020)

    Article  Google Scholar 

  • M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing – Process and its applications. Adv. Mater. 21, 1–13 (2009)

    Google Scholar 

  • T. Someya, Z. Bao, G. Malliaras, The rise of plastic bioelectronics. Nature 540, 379–385 (2016)

    Article  Google Scholar 

  • S. Staufert, H. Torlakcik, S. Pané, C. Hierold, Highly adherent Parylene-C coatings with Nanostructuring for enhanced cell adhesion and growth. IEEE Transactions on NanoBioscience 18(2), 230–233 (2019)

    Article  Google Scholar 

  • E. Tekin, B. De Gans, U.S. Schubert, Ink-jet printing of polymers – From single dots to thin film libraries. J. Mater. Chem. 14, 2627–2632 (2004)

    Article  Google Scholar 

  • G.G. Wallace, S.E. Moulton, G.M. Clark, Electrode-cellular interface. Science 324, 185–186 (2009)

    Article  Google Scholar 

  • L. Wei, A. Lakhtakia, A.P. Roopnariane, T.M. Ritty, Human fibroblast attachment on fibrous parylene-C thin-film substrates. Mater Sci Eng C 30(8), 1252–1259 (2010)

    Article  Google Scholar 

  • B.A. Weisenberg, D.L. Mooradian, Hemocompatibility of materials used in microelectromechanical systems: Platelet adhesion and morphology in vitro. J. Biomed. Mater. Res. 60(2), 283–291 (2002)

    Article  Google Scholar 

  • D. Wright, B. Rajalingam, J. Karp, S. Selvarasah, Y. Ling, J. Yeh, R. Langer, M.R. Dokmeci, A. Khademhosseini, Reusable reversibly sealable parylene membranes for cell and protein patterning. J. Biomed. Mater. Res. 85A(2), 530–538 (2008)

    Article  Google Scholar 

  • D. Wright, B. Rajalingam, S. Selvarasah, M.R. Dokmeci, A. Khademhosseini, Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils. Lab Chip 7(10), 1272–1279 (2007)

    Article  Google Scholar 

  • S. Wu, Calculation of interfacial tension in polymer systems. J. Polym. Sci., C Polym Symp. 34, 19–30 (1971)

    Article  Google Scholar 

  • F. Xue, Z. Liu, Y. Su, K. Varahramyan, Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors. Microelectron. Eng. 83, 298–302 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC, Brazil) under contract number 9307/2009-3, National Council for Scientific and Technological Development (CNPq/Brazil) and Coordination for the Improvement of Higher Level Personnel (CAPES/Brazil), Finance Code 001. The authors thank the Central Laboratory of Electronic Microscopy (LCME-UFSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Rambo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandelli, J.S., Koepp, J., Hama, A. et al. Cell viability and cytotoxicity of inkjet-printed flexible organic electrodes on parylene C. Biomed Microdevices 23, 2 (2021). https://doi.org/10.1007/s10544-020-00542-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00542-z

Keywords

Navigation