Skip to main content
Log in

Liquid marbles as bioreactors for the study of three-dimensional cell interactions

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Liquid marble as a bioreactor platform for cell-based studies has received significant attention, especially for developing 3D cell-based assays. This platform is particularly suitable for 3D in-vitro modeling of cell-cell interactions. For the first time, we demonstrated the interaction of olfactory ensheathing cells (OECs) with nerve debris and meningeal fibroblast using liquid marbles. As the transplantation of OECs can be used for repairing nerve injury, degenerating cell debris within the transplantation site can adversely affect the survival of transplanted OECs. In this paper, we used liquid marbles to mimic the hostile 3D environment to analyze the functional behavior of the cells and to form the basis for cell-based therapy. We show that OECs interact with debris and enhanced cellular aggregation to form a larger 3D spheroidal tissue. However, these spheroids indicated limitation in biological functions such as the inability of cells within the spheroids to migrate out and adherence to neighboring tissue by fusion. The coalescence of two liquid marbles allows for analyzing the interaction between two distinct cell types and their respective environment. We created a microenvironment consisting of 3D fibroblast spheroids and nerve debris and let it interact with OECs. We found that OECs initiate adherence with nerve debris in this 3D environment. The results suggest that liquid marbles are ideal for developing bioassays that could substantially contribute to therapeutic applications. Especially, insights for improving the survival and adherence of transplanted cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • F.T. Afshari, S. Kappagantula, J.W. Fawcett, Extrinsic and intrinsic factors controlling axonal regeneration after spinal cord injury. Expert Rev. Mol. Med. 11, e37 (2009)

    Article  Google Scholar 

  • P. Aussillous, D. Quéré, Liquid marbles. Nature 411, 924–927 (2001)

    Article  MATH  Google Scholar 

  • E. Bormashenko, Liquid marbles, elastic nonstick droplets: from Minireactors to self-propulsion. Langmuir 33, 663–669 (2017)

    Article  Google Scholar 

  • J.O. Castro, B.M. Neves, A.R. Rezk, N. Eshtiaghi, L.Y. Yeo, Continuous production of Janus and composite liquid marbles with tunable coverage. ACS Appl. Mater. Interfaces 8, 17751–17756 (2016)

    Article  Google Scholar 

  • G.D. Duraine, W.E. Brown, J.C. Hu, K.A. Athanasiou, Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages. Ann. Biomed. Eng. 43, 543–554 (2015)

    Article  Google Scholar 

  • J.A. Ekberg, D. Amaya, F. Chehrehasa, K. Lineburg, C. Claxton, L.C. Windus, B. Key, A. Mackay-Sim, J.A. St John, OMP-ZsGreen fluorescent protein transgenic mice for visualisation of olfactory sensory neurons in vivo and in vitro. J. Neurosci. Methods 196, 88–98 (2011)

    Article  Google Scholar 

  • J. C. Harrell, W. W. Dye, D. M. Harvell, M. Pinto, P. Jedlicka, C.A. Sartorius, K. B. Horwitz, Estrogen insensitivity in a model of estrogen receptor positive breast cancer lymph node metastasis. Cancer Res. 67, 10582–91 (2007)

  • B.R. He, S.T. Xie, M.M. Wu, D.J. Hao, H. Yang, Phagocytic removal of neuronal debris by olfactory ensheathing cells enhances neuronal survival and neurite outgrowth via p38MAPK activity. Mol. Neurobiol. 49, 1501–1512 (2014)

    Article  Google Scholar 

  • R.R. Khankan, I.B. Wanner, P.E. Phelps, Olfactory ensheathing cell-neurite alignment enhances neurite outgrowth in scar-like cultures. Exp. Neurol. 269, 93–101 (2015)

    Article  Google Scholar 

  • M.K. Khaw, C.H. Ooi, F. Mohd-Yasin, R. Vadivelu, J. St John, N.-T. Nguyen, Digital microfluidics with a magnetically actuated floating liquid marble. Lab Chip 16, 2211–2218 (2016)

    Article  Google Scholar 

  • Z. Liu, X. Fu, B.P. Binks, H.C. Shum, Coalescence of electrically charged liquid marbles. Soft Matter 13, 119–124 (2016)

    Article  Google Scholar 

  • M. T. Moreno-Flores, F. Lim, M. J. Martin-Bermejo, J. Diaz-Nido, J. Avila, F. Wandosell, Immortalized olfactory ensheathing glia promote axonal regeneration of rat retinal ganglion neurons. J. Neurochem. 85, 861–71 (2003)

  • M. T. Moreno-Flores, E. J. Bradbury, M. J. Martin-Bermejo, M. Agudo, F. Lim, E. Pastrana, J. Avila, J. Diaz-Nido, S. B. McMahon, F. Wandosell, A clonal cell line from immortalized olfactory ensheathing glia promotes functional recovery in the injured spinal cord. Mol. Ther. 13, 598–608 (2006)

  • A. Munaz, R.K. Vadivelu, J.A. St John, N.-T. Nguyen, A lab-on-a-chip device for investigating the fusion process of olfactory ensheathing cell spheroids. Lab Chip 16, 2946–2954 (2016)

    Article  Google Scholar 

  • Y. Nakamura, J. Ishii, A. Kondo, Bright fluorescence monitoring system utilizing Zoanthus sp. green fluorescent protein (ZsGreen) for human G-protein-coupled receptor signaling in microbial yeast cells. PLoS One 8, e82237 (2013)

    Article  Google Scholar 

  • C.H. Ooi, R.K. Vadivelu, J. St John, D.V. Dao, N.T. Nguyen, Deformation of a floating liquid marble. Soft Matter 11, 4576–4583 (2015a)

    Article  Google Scholar 

  • C.H. Ooi, A. Van Nguyen, G.M. Evans, O. Gendelman, E. Bormashenko, N.-T. Nguyen, A floating self-propelling liquid marble containing aqueous ethanol solutions. RSC Adv. 5, 101006–101012 (2015b)

    Article  Google Scholar 

  • C.H. Ooi, C. Plackowski, A.V. Nguyen, R.K. Vadivelu, J.A. St John, D.V. Dao, N.T. Nguyen, Floating mechanism of a small liquid marble. Sci. Rep. 6, 21777 (2016)

    Article  Google Scholar 

  • G. Raisman, S.C. Barnett, A. Ramon-Cueto, Repair of central nervous system lesions by transplantation of olfactory ensheathing cells. Handb. Clin. Neurol. 109, 541–549 (2012)

    Article  Google Scholar 

  • M. Rimann, U. Graf-Hausner, Synthetic 3D multicellular systems for drug development. Curr. Opin. Biotechnol. 23, 803–809 (2012)

    Article  Google Scholar 

  • D. Rogozhnikov, P.J. O'Brien, S. Elahipanah, M.N. Yousaf, Scaffold free bio-orthogonal assembly of 3-dimensional cardiac tissue via cell surface engineering. Sci. Rep. 6, 39806 (2016)

    Article  Google Scholar 

  • F. Sarvi, K. Jain, T. Arbatan, P.J. Verma, K. Hourigan, M.C. Thompson, W. Shen, P.P. Chan, Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv. Healthc. Mater. 4, 77–86 (2015)

    Article  Google Scholar 

  • Z. Su, J. Chen, Y. Qiu, Y. Yuan, F. Zhu, Y. Zhu, X. Liu, Y. Pu, C. He, Olfactory ensheathing cells: the primary innate immusnocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia 61, 490–503 (2013)

    Article  Google Scholar 

  • P. Tabakow, G. Raisman, W. Fortuna, M. Czyz, J. Huber, D. LI, P. Szewczyk, S. Okurowski, R. Miedzybrodzki, B. Czapiga, B. Salomon, A. Halon, Y. LI, J. Lipiec, A. Kulczyk, W. Jarmundowicz, Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant. 23, 1631–1655 (2014)

    Article  Google Scholar 

  • J.V. Terrovitis, R.R. Smith, E. Marban, Assessment and optimization of cell engraftment after transplantation into the heart. Circ. Res. 106, 479–494 (2010)

    Article  Google Scholar 

  • R.K. Vadivelu, C.H. Ooi, R.Q. Yao, J. Tello Velasquez, E. Pastrana, J. Diaz-Nido, F. Lim, J.A. Ekberg, N.T. Nguyen, J.A. St John, Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Sci. Rep. 5, 15083 (2015)

    Article  Google Scholar 

  • P.X. Wan, B.W. Wang, Z.C. Wang, Importance of the stem cell microenvironment for ophthalmological cell-based therapy. World J. Stem Cells 7, 448–460 (2015)

    Article  Google Scholar 

  • L.C.E. Windus, F. Chehrehasa, K.E. Lineburg, C. Claxton, A. Mackay-Sim, B. Key, J.A. St John, Stimulation of olfactory ensheathing cell motility enhances olfactory axon growth. Cell. Mol. Life Sci. 68(19), 3233–3247 (2011)

Download references

Acknowledgement

We acknowledge the funding support of the Australian Research Council for the discovery grant DP170100277. We thank the members of Griffith Institute for Drug Discovery, especially to Dr. James St. Johns and his group for providing the cell lines and cell culture facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raja K. Vadivelu or Nam-Trung Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadivelu, R.K., Kamble, H., Munaz, A. et al. Liquid marbles as bioreactors for the study of three-dimensional cell interactions. Biomed Microdevices 19, 31 (2017). https://doi.org/10.1007/s10544-017-0171-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0171-6

Keywords

Navigation