Skip to main content
Log in

An integrated microsystem with dielectrophoresis enrichment and impedance detection for detection of Escherichia coli

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

An integrated microsystem device with matched interdigitated microelectrode chip was fabricated for enrichment and detection of Escherichia coli O157:H7. The microsystem has integrated with positive dielectrophoresis (pDEP) enrichment and in situ impedance detection, whose total volume is only 3.0 × 10−3 m3, and could provide impedance testing voltages of 0 ~ 10 V, detection frequencies of 1 KHz ~ 1 MHz, DEP excitation signals with amplitude of 0 ~ 10 Vpp and frequencies of 1KHz ~ 1 MHz, which fully meets the demands of pDEP enrichment and impedance detection for bacteria. The microfluidic chip with interdigitated microelectrodes was manufactured by microfabrication methods. The interdigital microelectrode array has sufficient contact area with a bacterial suspension to improve enrichment efficiency and detection sensitivity. Bacteria in the interdigital microelectrode area of the microfluidic chip were firstly captured and enriched by pDEP. Then, in situ impedance detection of the enriched bacteria was realized by switching test conditions. Using the self-assembly microsystem, a novel quantitative detection method was established and demonstrated to detect Escherichia coli O157:H7. Experimental results showed that the detection limits of Escherichia coli O157:H7 was 5 × 104 cfu mL−1, and testing time was only 6 min under the optimized detection voltage of 100 mV and frequency of 500 KHz. The method was successfully used to detect Escherichia coli O157:H7 in synthetic chicken synthetic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • M.J. Allen, S.C. Edberg, D.J. Reasoner, Int. J. Food Microbiol. 92, 265–274 (2004)

    Article  Google Scholar 

  • J.Z. AnHong Zhou, Q.J. Xie, S.Z. Yao, Biomaterials 10 (2001)

  • C. Baek, H.Y. Kim, D. Na, J. Min, Sensors Actuators B Chem. 208, 238–244 (2015)

    Article  Google Scholar 

  • A. Bajwa, S.T. Tan, R. Mehta, B. Bahreyni, Sensors (Basel) 13, 8188–8198 (2013)

    Article  Google Scholar 

  • D.A. Boehm, P.A. Gottlieb, S.Z. Hua, Sensors Actuators B Chem. 126, 508–514 (2007)

    Article  Google Scholar 

  • W.H. Chang, C.H. Wang, C.L. Lin, J.J. Wu, M.S. Lee, G.B. Lee, Biosens. Bioelectron. 66, 148–154 (2015)

    Article  Google Scholar 

  • I.H. Cho, J. Irudayaraj, Int. J. Food Microbiol. 164, 70–75 (2013)

    Article  Google Scholar 

  • S.S. Donato, V. Chu, D.M. Prazeres, J.P. Conde, Electrophoresis 34, 575–582 (2013)

    Article  Google Scholar 

  • M. Dweik, R.C. Stringer, S.G. Dastider, Y. Wu, M. Almasri, S. Barizuddin, Talanta 94, 84–89 (2012)

    Article  Google Scholar 

  • C.F. Fronczek, D.J. You, J.Y. Yoon, Biosens. Bioelectron. 40, 342–349 (2013)

    Article  Google Scholar 

  • X. He, C. Hu, Q. Guo, K. Wang, Y. Li, J. Shangguan, Biosens. Bioelectron. 42, 460–466 (2013)

    Article  Google Scholar 

  • S. Jain, S. Chattopadhyay, R. Jackeray, C.K. Abid, G.S. Kohli, H. Singh, Biosens. Bioelectron. 31, 37–43 (2012)

    Article  Google Scholar 

  • J.H. Jung, G.Y. Kim, T.S. Seo, Lab Chip 11, 3465–3470 (2011)

    Article  Google Scholar 

  • S. Kim, G. Yu, T. Kim, K. Shin, J. Yoon, Electrochim. Acta 82, 126–131 (2012)

    Article  Google Scholar 

  • C.C. Liu, C.Y. Yeung, P.H. Chen, M.K. Yeh, S.Y. Hou, Food Chem. 141, 2526–2532 (2013)

    Article  Google Scholar 

  • H. Mollasalehi, R. Yazdanparast, Anal. Chim. Acta 770, 169–174 (2013)

    Article  Google Scholar 

  • N.J. Opet, R.E. Levin, J. Microbiol. Methods 94, 69–72 (2013)

    Article  Google Scholar 

  • Y. X. Renjie et al, T. Zhang, Y. Jiang, Analytical methods, doi:10.1039/C4AY02880E10.1039/c4ay02880e, 6, (2015).

  • Y. Song, H. Zhang, C.H. Chon, S. Chen, X. Pan, D. Li, Anal. Chim. Acta 681, 82–86 (2010)

    Article  Google Scholar 

  • J. Suehiro, M. Shutou, T. Hatano, M. Hara, Sensors Actuators B Chem. 96, 144–151 (2003)

    Article  Google Scholar 

  • J. Suehiro, A. Ohtsubo, T. Hatano, M. Hara, Sensors Actuators B Chem. 119, 319–326 (2006)

    Article  Google Scholar 

  • M.R. Tomkins, J. Chow, Y. Lai, A. Docoslis, Sensors Actuators B Chem. 176, 248–252 (2013)

    Article  Google Scholar 

  • M. Varshney and Y. Li, Biosensors & bioelectronics, 22, 2408–2414, (2007).

    Google Scholar 

  • M. Varshney, Y. Li, Biosens. Bioelectron. 24, 2951–2960 (2009)

    Article  Google Scholar 

  • M. Varshney, Y. Li, B. Srinivasan, S. Tung, Sensors Actuators B Chem. 128, 99–107 (2007)

    Article  Google Scholar 

  • R.P. Vind, A.L. Inkar, R.K. Choudhury, B.K. Nayak, A. Saxena, R.G. Thomas, D.C. Biswas, B.V. John, Nuclear instruments and methods in physics research section a: Accelerators, spectrometers. Detect. Assoc Equip. 580, 1435–1440 (2007)

    Article  Google Scholar 

  • N. Wang, M. He, H.C. Shi, Anal. Chim. Acta 590, 224–231 (2007)

    Article  Google Scholar 

  • R. Wang, Y. Ni, Y. Xu, Y. Jiang, C. Dong, N. Chuan, Anal. Chim. Acta 853, 710–717 (2015)

    Article  Google Scholar 

  • L. Yang, Talanta 74, 1621–1629 (2008)

    Article  Google Scholar 

  • L. Yang, Talanta 80, 551–558 (2009)

    Article  Google Scholar 

  • L. Yang, Anal. Lett. 45, 187–201 (2012)

    Article  Google Scholar 

  • L. Yang, C. Ruan, Y. Li, Biosens. Bioelectron. 19, 495–502 (2003)

    Article  Google Scholar 

  • L. Yang, P.P. Banada, M.R. Chatni, K. Seop Lim, A.K. Bhunia, M. Ladisch, R. Bashir, Lab Chip 6, 896–905 (2006)

    Article  Google Scholar 

  • P. Zuo, X. Li, D.C. Dominguez, B.C. Ye, Lab Chip 13, 3921–3928 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (No. 21375156); National High Technology Research and Development Program of China (Ministry of Science and Technology 863 Plan) (No.2015AA021104); Frontier Research Key Projects of Chongqing Science and Technology Committee, [cstc2015jcyjBX0010]; Scientific and Technical Innovation Projects for People’s Livelihood of Chongqing Science and Technology Committee, [cstc2015shms,zx00014]; Benefit Projects for People’s Livelihood by Science and Technology, Chongqing Science and Technology Committee [cstc2015jcsf8001],2015.07-2017.07. Support the USDA-Purdue Center for Food Safety Engineering is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Xu, Y., Liu, H. et al. An integrated microsystem with dielectrophoresis enrichment and impedance detection for detection of Escherichia coli . Biomed Microdevices 19, 34 (2017). https://doi.org/10.1007/s10544-017-0167-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0167-2

Keywords

Navigation