Skip to main content

Advertisement

Log in

Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Stable chronic functionality of intracortical probes is of utmost importance toward realizing clinical application of brain-machine interfaces. Sustained immune response from the brain tissue to the neural probes is one of the major challenges that hinder stable chronic functionality. There is a growing body of evidence in the literature that highly compliant neural probes with sub-cellular dimensions may significantly reduce the foreign-body response, thereby enhancing long term stability of intracortical recordings. Since the prevailing commercial probes are considerably larger than neurons and of high stiffness, new approaches are needed for developing miniature probes with high compliance. In this paper, we present design, fabrication, and in vitro evaluation of ultra-miniature (2.7 μm x 10 μm cross section), ultra-compliant (1.4 × 10-2 μN/μm in the axial direction, and 2.6 × 10-5 μN/μm and 1.8 × 10-6 μN/μm in the lateral directions) neural probes and associated probe-encasing biodissolvable delivery needles toward addressing the aforementioned challenges. The high compliance of the probes is obtained by micron-scale cross-section and meandered shape of the parylene-C insulated platinum wiring. Finite-element analysis is performed to compare the strains within the tissue during micromotion when using the ultra-compliant meandered probes with that when using stiff silicon probes. The standard batch microfabrication techniques are used for creating the probes. A dissolvable delivery needle that encases the probe facilitates failure-free insertion and precise placement of the ultra-compliant probes. Upon completion of implantation, the needle gradually dissolves, leaving behind the ultra-compliant neural probe. A spin-casting based micromolding approach is used for the fabrication of the needle. To demonstrate the versatility of the process, needles from different biodissolvable materials, as well as two-dimensional needle arrays with different geometries and dimensions, are fabricated. Further, needles incorporating anti-inflammatory drugs are created to show the co-delivery potential of the needles. An automated insertion device is developed for repeatable and precise implantation of needle-encased probes into brain tissue. Insertion of the needles without mechanical failure, and their subsequent dissolution are demonstrated. It is concluded that ultra-miniature, ultra-compliant probes and associated biodissolvable delivery needles can be successfully fabricated, and the use of the ultra-compliant meandered probes results in drastic reduction in strains imposed in the tissue as compared to stiff probes, thereby showing promise toward chronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • J. Agorelius, F. Tsanakalis, A. Firgber, P.T. Thorbergsson, L.M.E. Pettersson, J. Schouenborg, Front. Neurosci. 9, 331 (2015)

    Article  Google Scholar 

  • N.A. Alba, Z. Du, K. Catt, T.D.Y. Kozai, X.T. Cui, Biosensors 5(4), 618–646 (2015)

    Article  Google Scholar 

  • J. Bartels, D. Andreasen, P. Ehirim, H. Mao, S. Seibert, E.J. Wright, P. Kennedy, J. Neurosci. Meth. 174(2), 168–176 (2008)

    Article  Google Scholar 

  • B. Bediz, E. Korkmaz, R. Khilwani, C. Donahue, G. Erdos, L.D. Falo Jr., O.B. Ozdoganlar, Pharm. Res. 31(1), 117–135 (2014)

    Article  Google Scholar 

  • R. Biran, D.C. Martin, P.A. Tresco, Exp. Neurol. 195(1), 115–126 (2005)

    Article  Google Scholar 

  • C.S. Bjornsson, S.J. Oh, Y.A. Al-Kofahi, Y.J. Lim, J.N. Turner, S. De, B. Roysam, W. Shain, S.J. Kim, J. Neural Eng. 3(3), 196–207 (2006)

    Article  Google Scholar 

  • E.N. Brown, L.M. Frank, D. Tang, M.C. Quirk, M.A. Wilson, J. Neurosci. 18(18), 7411–7425 (1998)

    Google Scholar 

  • J.R. Capadona, K. Shanmuganathan, D.J. Tyler, S.J. Rowan, C. Weder, Science 319(5868), 1370–1374 (2008)

    Article  Google Scholar 

  • F. Casanova, P.R. Carney, M. Sarntinoranont, J. Neurosci. Methods 237, 79–89 (2014)

    Article  Google Scholar 

  • H.Y. Chan, Aslan, D. M. Aslam, S.H. Wang, G.M. Swain, K.D. Wise, MEMS 2008 – IEEE 21st International Conference on Micro Electro Mechanical Systems, 244–247(2008)

  • H.Y. Chan, M. Varney, S. Hatch, D. M. Aslam, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 1202-1205 (2009)

  • H.Y. Chan, D.M. Aslam, J.A. Wiler, B. Casey, J. Microelectromech. Syst. 18(3), 511–521 (2009b)

    Article  Google Scholar 

  • Z.J. Chen, G.T. Gillies, W.C. Broaddus, S.S. Prabhu, H. Fillmore, R.M. Mitchell, F.D. Corwin, P.P. Fatouros, J. Neurosurg. 101(2), 314–322 (2004)

    Article  Google Scholar 

  • C.H. Chen, S.C. Chuang, H.C. Su, W.L. Hsu, T.R. Yew, Y.C. Chang, S.R. Yeh, D.J. Yao, Lab Chip 11(9), 1647–1655 (2011)

    Article  Google Scholar 

  • K.C. Cheung, K. Djupsund, Y. Dan, L.P. Lee, J. Microelectromech. Syst. 12(2), 179–184 (2003)

    Article  Google Scholar 

  • K.L. Drake, K.D. Wise, J. Farraye, D.J. Anderson, S.L. BeMent, IEEE Trans. Biomed. Eng. 35(9), 719–732 (1988)

    Article  Google Scholar 

  • I.D. Dryg, M.P. Ward, K.Y. Qing, H. Mei, J.E. Schaffer, P.P. Irazoqui, IEEE Trans. Neural Syst. Rehabil. Eng. 23(4), 562–571 (2015)

    Article  Google Scholar 

  • T. Escamilla-Mackert, N.B. Langhals, T.D.Y. Kozai, D.R. Kipke, Ann. Int. IEEE EMBS Conf. 1616-1618 (2009)

  • W. Fan, I. Maesoon, Y. Euisik, 2011 I.E. 16th International Conference on Solid-State Sensors, Actuators and Microsystems, 966–969 (2011)

  • G. K. Fedder, B. Ozdoganlar, P. J. Gilgunn, US Patent 9,241,651, (2016)

  • E.E. Fetz, D.V. Finocchio, Exp. Brain Res. 23(3), 217–240 (1975)

    Article  Google Scholar 

  • S. Filiz, C.M. Conley, M.B. Wasserman, O.B. Ozdoganlar, Int. J. Mach. Tools Manuf. 47(7), 1088–1100 (2007)

    Article  Google Scholar 

  • S. Filiz, L. Xie, L.E. Weiss, O.B. Ozdoganlar, Int. J. Mach. Tools Manuf. 48(3), 459–472 (2008)

    Article  Google Scholar 

  • C. P. Foley, K. B. Neeves, W. M. Saltzman, W. L. Olbricht, AIChE Annual Meeting (2006)

  • A.P. Georgopoulos, A.B. Schwartz, R.E. Kettner, Science 233(4771), 1416–1419 (1986)

    Article  Google Scholar 

  • P. J. Gilgunn, R. Khilwani, T. D. Y. Kozai, D. J. Weber, X. T. Cui, G. Erdos, O.B. Ozdoganlar, G.K. Fedder, 2012 I.E. 25th International Conference on Micro Electro Mechanical Systems (MEMS), 56-59 (2012)

  • A. Gilletti, J. Muthuswamy, J. Neural Eng. 3(3), 189–195 (2006)

    Article  Google Scholar 

  • M.D. Johnson, O.E. Kao, D.R. Kipke, J. Neurosci. Meth. 160(2), 276–287 (2007)

    Article  Google Scholar 

  • W.J. Kargo, D.A. Nitz, J. Neurosci. 23(35), 11255–11269 (2003)

    Google Scholar 

  • L. Karumbaiah, S.E. Norman, N.B. Rajan, S. Anand, T. Saxena, M. Betancur, R. Patkar, R.V. Bellamkonda, Biomaterials 33(26), 5983–5996 (2012)

    Article  Google Scholar 

  • P. Kennedy, S.S. Mirra, R.A.E. Bakay, Neurosci. Lett. 142(1), 89–94 (1992)

    Article  Google Scholar 

  • D.H. Kim, D.C. Martin, Biomaterials 27(15), 3031–3037 (2006)

    Article  Google Scholar 

  • Y.T. Kim, R.W. Hitchcock, M.J. Bridge, P.A. Tresco, Biomaterials 25(12), 2229–2237 (2004)

    Article  Google Scholar 

  • C.L. Kolarcik, S.D. Leubben, S.A. Sapp, J. Hanner, N. Snyder, T.D.Y. Kozai, E. Chang, J.A. Nabity, S.T. Nabity, C.F. Lagenaur, X.T. Cui, Soft Matter 11(24), 4547–4861 (2015a)

    Article  Google Scholar 

  • C.L. Kolarcik, K. Catt, E. Rost, I.N. Albrecht, D. Bourbeau, Z. Du, T.D.Y. Kozai, X. Luo, D.J. Weber, X.T. Cui, J. Neural Eng. 12(1), 016008 (2015b)

    Article  Google Scholar 

  • E. Korkmaz, MS Dissertation, Bilkent University (2011), http://hdl.handle.net/11693/15171

  • E. Korkmaz, E.E. Friedrich, M.H. Ramadan, G. Erdos, A.R. Mathers, O.B. Ozdoganlar, N.R. Washburn, L.D. Falo, Acta Biomater. 24, 96–105 (2015a)

    Article  Google Scholar 

  • E. Korkmaz, E. E. Friedrich, M. H. Ramadan, G. Erdos, A. R. Mathers, O. B. Ozdoganlar, N. R. Washburn, L. D. Falo, Accept. J. Pharmaceut. Sci. (2015)

  • T.D.Y. Kozai, D.R. Kipke, J. Neurosci. Meth. 184(2), 199–205 (2009)

    Article  Google Scholar 

  • T.D.Y. Kozai, A.L. Vazquez, J. Mater. Chem. B 3, 4965–4978 (2015)

    Article  Google Scholar 

  • T.D.Y. Kozai, T.C. Marzullo, N.B. Langhals, F.M. Hooi, A.K. Majewska, E.B. Brown, D.R. Kipke, J. Neural Eng. 7(4), 046011 (2010)

    Article  Google Scholar 

  • T.D.Y. Kozai, A.L. Vazquez, C.L. Weaver, S.G. Kim, X.T. Cui, J. Neural Eng. 9(6), 066001 (2012a)

    Article  Google Scholar 

  • T.D.Y. Kozai, N.B. Langhals, P.R. Patel, X. Deng, H. Zhang, K.L. Smith, J. Lahann, N.A. Kotov, D.R. Kipke, Nat. Mater. 11(12), 1065–1073 (2012b)

    Article  Google Scholar 

  • T.D.Y. Kozai, N.A. Alba, H. Zhang, N.A. Kotov, R.A. Gaunt, X.T. Cui, in Nanotechnology and neuroscience: nano-electronic, photonic and mechanical neuronal interfacing, ed. by M.D. Vittorio, L. Martiradonna, J. Assad (Springer, New York, 2014a), pp. 71–134

    Chapter  Google Scholar 

  • T.D.Y. Kozai, X. Li, L.M. Bodily, E.M. Caparosa, G.A. Zenonos, D.L. Carlisle, R.M. Friedlander, X.T. Cui, Biomaterials 35(36), 9620–9634 (2014b)

    Article  Google Scholar 

  • T.D.Y. Kozai, Z. Gugel, X. Li, P.J. Gilgunn, R. Khilwani, O.B. Ozdoganlar, G.K. Fedder, D.J. Weber, X.T. Cui, Biomaterials 35(34), 9255–9268 (2014c)

    Article  Google Scholar 

  • T.D.Y. Kozai, Z. Du, Z.V. Gugel, M.A. Smith, S.M. Chase, L.M. Bodily, E.M. Caparosa, R.M. Friedlander, X.T. Cui, J. Neurosci. Meth. 242, 15–40 (2015a)

    Article  Google Scholar 

  • T.D.Y. Kozai, K. Catt, X. Li, Z.V. Gugel, V.T. Olafsson, A.L. Vazquez, X.T. Cui, Biomaterials 37, 25–39 (2015b)

    Article  Google Scholar 

  • T.D.Y. Kozai, A. Jaquins-Gerstl, A.L. Vazquez, A.C. Michael, X.T. Cui, ACS Chem. Neurosci. 6(1), 48–67 (2015c)

    Article  Google Scholar 

  • T.D.Y. Kozai, K. Catt, Z. Du, K. Na, O. Srivannavit, R.M. Haque, J. Seymour, K.D. Wise, E. Yoon, X.T. Cui, IEEE Trans. Biomed. Eng. 63(1), 111–119 (2016a)

    Article  Google Scholar 

  • T.D.Y. Kozai, A. Jaquins-Gerstl, A.L. Vazquez, A.C. Michael, X.T. Cui, Biomaterials 87, 157–169 (2016b)

    Article  Google Scholar 

  • T.D.Y. Kozai, J.R. Eles, A.L. Vazquez, X.T. Cui, J. Neurosci. Meth. 258, 46–55 (2016c)

    Article  Google Scholar 

  • A. Lecomte, V. Castagnola, E. Descamps, L. Dahan, M.C. Blatché, T.M. Dinis, E. Leclerc, C. Egles, C. Bergaud, J. Micromech. Microeng. 25(12), 125003 (2015)

    Article  Google Scholar 

  • K.K. Lee, J.P. He, A. Singh, S. Massia, G. Ehteshami, B. Kim, G. Raupp, J. Micromech. Microeng. 14(1), 32–37 (2003)

    Article  Google Scholar 

  • H. Lee, R.V. Bellamkonda, W. Sun, M.E. Levenston, J. Neural Eng. 2(4), 81–89 (2005)

    Article  Google Scholar 

  • C.D. Lee, S.A. Hara, L. Yu, J.T.W. Kuo, B.J. Kim, T. Hoang, V. Pikov, E. Meng, J. Biomed. Mater. Res. Part B: Appl. Biomater. 104(2), 357–268 (2016)

    Article  Google Scholar 

  • D. Lewitus, K.L. Smith, W. Shain, J. Kohn, Acta Biomater. 7(6), 2483–2491 (2011)

    Article  Google Scholar 

  • G. Lind, C.E. Linsmeier, J. Thelin, J. Schouenborg, J. Neural Eng. 7(4), 046005 (2010)

    Article  Google Scholar 

  • X. Liu, D.B. McCreery, L.A. Bullara, W.F. Agnew, IEEE Trans. Neural Syst. Rehabil. Eng. 14(1), 91–100 (2006)

    Article  Google Scholar 

  • M.C. Lo, S. Wang, S. Singh, V.B. Damodaran, H.M. Kaplan, J. Kohn, D.I. Shreiber, J.D. Zahn, Biomed. Microdevices 17(2), 1–11 (2015)

    Article  Google Scholar 

  • X. Luo, C. Matranga, S. Tan, N. Alba, X.T. Cui, Biomaterials 32(26), 6316–6323 (2011)

    Article  Google Scholar 

  • N.T. Markwardt, J. Stokol, R.L.R. Ii, J. Neurosci. Methods 214(2), 119–125 (2013)

    Article  Google Scholar 

  • P.T. McCarthy, K.J. Otto, M.P. Rao, Biomed. Microdevices 13(3), 503–515 (2011a)

    Article  Google Scholar 

  • P.T. McCarthy, M.P. Rao, K.J. Otto, J. Neural Eng. 8(4), 046007 (2011b)

    Article  Google Scholar 

  • G.C. McConnell, H.D. Rees, A.I. Levey, C.A. Gutekunst, R.E. Gross, R.V. Bellamkonda, J. Neural Eng. 6(5), 056003 (2009)

    Article  Google Scholar 

  • D. McCreery, A. Lossinsky, V. Pikov, X. Liu, IEEE Trans. Biomed. Eng. 53(4), 726–737 (2006)

    Article  Google Scholar 

  • M.T.C. McCrudden, A.Z. Alkilani, C.M. McCrudden, E. McAlister, H.O. McCarthy, A.W. Woolfson, R.F. Donnelly, J. Control. Release 180, 71–78 (2014)

    Article  Google Scholar 

  • S. Metz, A. Bertsch, D. Bertrand, P. Renaud, Biosens. Bioelectron. 19(10), 1309–1318 (2004)

    Article  Google Scholar 

  • J.T. Neary, Y. Kang, K.A. Willoughby, E.F. Ellis, J. Neurosci. 23(6), 2348–2356 (2003)

    Google Scholar 

  • J.K. Nguyen, D.J. Park, J.L. Skousen, A.E. Hess-Dunning, D.J. Tyler, S.J. Rowan, C. Weder, J.R. Capadona, J. Neural Eng. 11(5), 056014 (2014)

    Article  Google Scholar 

  • M.A. Nicolelis, D. Dimitrov, J.M. Carmena, R. Crist, G. Lehew, J.D. Kralik, S.P. Wise, Proc. Natl. Acad. Sci. U. S. A. 100(19), 11041–11046 (2003)

    Article  Google Scholar 

  • D. P. O’Brien, T. R. Nichols, M. G. Allen, MEMS 2001-14th IEEE Int. Conf. Micro Electro Mech. Syst. 216–219 (2001)

  • P. R. Patel, H. Zhang, M. Robbins, J. Nofar, S. Marshal, M. Kobylarek, T. D. Y. Kozai, N. A. Kotov, C. A. Chestek, J. Neural Eng. 13(6), 066002 (2016)

  • C. Pang, J.G. Cham, Z. Nenadic, S. Musallam, Y.C. Tai, J.W. Burdick, R.A. Andersen, Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 7114–7117 (2005)

    Google Scholar 

  • P.R. Patel, K. Na, H. Zhang, T.D.Y. Kozai, N.A. Kotov, C.A. Chestek, J. Neural Eng. 12(4), 046009 (2015)

    Article  Google Scholar 

  • V.S. Polikov, P.A. Tresco, W.M. Reichert, J. Neurosci. Methods 148(1), 1–18 (2005)

    Article  Google Scholar 

  • P.J. Rousche, R.A. Normann, J. Neurosci. Methods 82(1), 1–15 (1998)

    Article  Google Scholar 

  • A.J. Sawyer, T.R. Kyriakides, J. Neural Eng. 10(1), 016013 (2013)

    Article  Google Scholar 

  • A.B. Schwartz, D.W. Moran, Eur. J. Neurosci. 12(6), 1851–1856 (2000)

    Article  Google Scholar 

  • A.B. Schwartz, X.T. Cui, D.J. Weber, D.W. Moran, Neuron 52(1), 205–220 (2006)

    Article  Google Scholar 

  • J.P. Seymour, D.R. Kipke, Biomaterials 28(25), 3594–3607 (2007)

    Article  Google Scholar 

  • J.P. Seymour, Y.M. Elkasabi, H.Y. Chen, J. Lahann, D.R. Kipke, Biomaterials 30(31), 6158–6167 (2009)

    Article  Google Scholar 

  • W. Shain, L. Spataro, J. Dilgen, K. Haverstick, S. Retterer, M. Isaacson, M. Stalzman, J.N. Turner, IEEE Trans. Neural. Syst. Rehabil. Eng. 11(2), 186–188 (2003)

    Article  Google Scholar 

  • W. Shen, L. Karumbaiah, X. Liu, T. Saxena, S. Chen, R. Patkar, R.V. Bellamkonda, M.G. Allen, Microsyst. Nanoeng. 1, 15010 (2015)

    Article  Google Scholar 

  • L. Spataro, J. Dilgen, S. Retterer, A.J. Spence, M. Isaacson, J.N. Turner, W. Shain, Exp. Neurol. 194(2), 289–300 (2005)

    Article  Google Scholar 

  • J. Subbaroyan, D.C. Martin, D.R. Kipke, J. Neural Eng. 2(4), 103–113 (2005)

    Article  Google Scholar 

  • S. Suner, M.R. Fellows, C. Vargas-Irwin, G.K. Nakata, J.P. Donoghue, IEEE Trans. Neural. Syst. Rehabil. Eng. 13(4), 524–541 (2005)

    Article  Google Scholar 

  • T. Suzuki, K. Mabuchi, S. Takeuchi, Int IEEE EMBS Conf Neural Eng, 154–156 (2003)

  • D.H. Szarowski, M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead, J.N. Turner, W. Shain, Brain Res. 983(1), 23–35 (2003)

    Article  Google Scholar 

  • D.M. Taylor, S.I. Tillery, A.B. Schwartz, Science 296(5574), 1829–1832 (2002)

    Article  Google Scholar 

  • B.A. Wester, R.H. Lee, M.C. LaPlaca, J. Neural Eng. 6(2), 024002 (2009)

    Article  Google Scholar 

  • Z. Xiang, S.C. Yen, N. Xue, T. Sun, W.M. Tsang, S. Zhang, L.D. Liao, N.V. Thakor, C. Lee, J. Micromech. Microeng. 24(6), 065015 (2014)

    Article  Google Scholar 

  • H. Yoon, C.S. Smith, V.K. Varadan, J. Nanotechnol. Eng. Med. 2(3), 031001 (2011)

    Article  Google Scholar 

  • M. Zhang, J. Wu, L. Wang, K. Xiao, W. Wen, Lab Chip 10(9), 1199–1203 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Shawn Lister and Pratiti Mandal for assistance with Xradia UltraXRM-L200 for nano-CT images. This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) Biological Technologies Office (BTO) Electrical Prescriptions (ElectRx) program under the auspices of Dr. Douglas J. Weber through the Space and Naval Warfare Systems Center (SPAWAR) – Pacific, Cooperative Agreement No. HR0011-15-2-0009 and Microsystems Technology Office (MTO) under the auspices of Dr. Jack Judy through the SPAWAR, Pacific Award No. N66001-11-1-4025. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of SPAWAR or DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Burak Ozdoganlar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khilwani, R., Gilgunn, P.J., Kozai, T.D.Y. et al. Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization. Biomed Microdevices 18, 97 (2016). https://doi.org/10.1007/s10544-016-0125-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0125-4

Keywords

Navigation