Skip to main content
Log in

Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81–176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81–176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81–176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • A. N. Ajene, C. L. Fischer Walker, R. E. Black, Enteric pathogens and reactive arthritis: a systematic review of campylobacter, salmonella and Shigella-associated reactive arthritis. J Health Popul Nutr 31, 299–307 (2013)

    Article  Google Scholar 

  • R. Baudoin, L. Griscom, M. Monge, C. Legallais, E. Leclerc, Development of a renal microchip for in vitro distal tubule models. Biotechnol Prog 23, 1245–1253 (2007)

    Google Scholar 

  • R. E. Black, M. M. Levine, M. L. Clements, T. P. Hughes, M. J. Blaser, Experimental campylobacter jejuni infection in humans. J Infect Dis 157, 472–479 (1988)

    Article  Google Scholar 

  • Cdc. (2013). Campylobacter jejuni - Pathogens & Protocols [Online]. http://www.cdc.gov/pulsenet/pathogens/campylobacter.html: Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED).

  • E. C. Chan, K. K. Pasikanti, J. K. Nicholson, Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat Protoc 6, 1483–1499 (2011)

    Article  Google Scholar 

  • M. Chi, B. Yi, S. Oh, D. J. Park, J. H. Sung, S. Park, A microfluidic cell culture device (muFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine. Biomed Microdevices 17, 9966 (2015)

    Article  Google Scholar 

  • E. A. Elsinghorst, Measurement of invasion by gentamicin resistance. Methods Enzymol 236, 405–420 (1994)

    Article  Google Scholar 

  • M. B. Esch, T. L. King, M. L. Shuler, The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng 13, 55–72 (2011)

    Article  Google Scholar 

  • M. B. Esch, G. J. Mahler, T. Stokol, M. L. Shuler, Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 14, 3081–3092 (2014)

    Article  Google Scholar 

  • L. M. Friis, C. Pin, B. M. Pearson, J. M. Wells, In vitro cell culture methods for investigating campylobacter invasion mechanisms. J Microbiol Methods 61, 145–160 (2005)

    Article  Google Scholar 

  • T. Hannu, M. Kauppi, M. Tuomala, I. Laaksonen, P. Klemets, M. Kuusi, Reactive arthritis following an outbreak of campylobacter jejuni infection. J Rheumatol 31, 528–530 (2004)

    Google Scholar 

  • T. Hannu, L. Mattila, H. Rautelin, P. Pelkonen, P. Lahdenne, A. Siitonen, M. Leirisalo-Repo, Campylobacter-triggered reactive arthritis: a population-based study. Rheumatology (Oxford) 41, 312–318 (2002)

  • J. S. Hill Gaston, M. S. Lillicrap, Arthritis associated with enteric infection. Best Pract Res Clin Rheumatol 17, 219–239 (2003)

    Article  Google Scholar 

  • D. Hofreuter, V. Novik, J. E. Galan, Metabolic diversity in campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 4, 425–433 (2008)

    Article  Google Scholar 

  • R. M. Howlett, M. P. Davey, W. Paul Quick, D. J. Kelly, Metabolomic analysis of the food-borne pathogen: application of direct injection mass spectrometry for mutant characterisation. Metabolomics 10, 887–896 (2014)

    Article  Google Scholar 

  • L. Hu, D. J. Kopecko, Campylobacter jejuni 81-176 associates with microtubules and dynein during invasion of human intestinal cells. Infect Immun 67, 4171–4182 (1999)

    Google Scholar 

  • D. Huh, H. J. Kim, J. P. Fraser, D. E. Shea, M. Khan, A. Bahinski, G. A. Hamilton, D. E. Ingber, Microfabrication of human organs-on-chips. Nat Protoc 8, 2135–2157 (2013)

    Article  Google Scholar 

  • D. Huh, D. C. Leslie, B. D. Matthews, J. P. Fraser, S. Jurek, G. A. Hamilton, K. S. Thorneloe, M. A. Mcalexander, D. E. Ingber, A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4, 159ra147 (2012)

    Article  Google Scholar 

  • D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, D. E. Ingber, Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010)

    Article  Google Scholar 

  • M. Ibba, D. Soll, Aminoacyl-tRNA Synthesis. Annu Rev Biochem 69, 34 (2000)

    Article  Google Scholar 

  • T. Ica, V. Caner, O. Istanbullu, H. D. Nguyen, B. Ahmed, D. R. Call, H. Beyenal, Characterization of mono- and mixed-culture campylobacter jejuni biofilms. Appl Environ Microbiol 78, 1033–1038 (2012)

    Article  Google Scholar 

  • B. R. Jackson, J. A. Zegarra, H. Lopez-Gatell, J. Sejvar, F. Arzate, S. Waterman, A. S. Nunez, B. Lopez, J. Weiss, R. Q. Cruz, D. Y. Murrieta, R. Luna-Gierke, K. Heiman, A. R. Vieira, C. Fitzgerald, P. Kwan, M. Zarate-Bermudez, D. Talkington, V. R. Hill, B. Mahon, Binational outbreak of Guillain-Barre syndrome associated with Campylobacter jejuni infection, Mexico and USA, 2011. Epidemiol Infect, 1–11 (2013)

  • K. J. Jang, A. P. Mehr, G. A. Hamilton, L. A. Mcpartlin, S. Chung, K. Y. Suh, D. E. Ingber, Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb) 5, 1119–1129 (2013)

  • M. Javanmard, F. Babrzadeh, R. W. Davis, Microfluidic force spectroscopy for characterization of biomolecular interactions with piconewton resolution. Appl Phys Lett 97, 173704 (2010)

    Article  Google Scholar 

  • J. Jung, Y. Jung, B. Gill, C. Kim, K. J. Hwang, Y. R. Ju, H. J. Lee, H. Chu, G. S. Hwang, Metabolic responses to Orientia tsutsugamushi infection in a mouse model. PLoS Negl Trop Dis 9, e3427 (2015)

    Article  Google Scholar 

  • Y. B. Kang, T. R. Sodunke, J. Lamontagne, J. Cirillo, C. Rajiv, M. J. Bouchard & M. Noh, Liver sinusoid on a chip: long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms. Biotechnol Bioeng. 112(12), 2571–82 (2015). doi:10.1002/bit.25659

  • H. J. Kim, D. Huh, G. Hamilton, D. E. Ingber, Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012)

    Article  Google Scholar 

  • H. J. Kim, D. E. Ingber, Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb) 5, 1130–1140 (2013)

  • J. A. Korlath, M. T. Osterholm, L. A. Judy, J. C. Forfang, R. A. Robinson, A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis 152, 592–596 (1985)

    Article  Google Scholar 

  • J. S. Lee, R. Romero, Y. M. Han, H. C. Kim, C. J. Kim, J. S. Hong, D. Huh, Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J Matern Fetal Neonatal Med, 1–9 (2015)

  • J. Ling, N. Reynolds, M. Ibba, Aminoacyl-tRNA synthesis and translational quality control. Annu Rev Microbiol 63, 61–78 (2009)

    Article  Google Scholar 

  • X. Liu, B. Gao, V. Novik, J. E. Galan, Quantitative proteomics of intracellular campylobacter jejuni reveals metabolic reprogramming. PLoS Pathog 8, e1002562 (2012)

    Article  Google Scholar 

  • M. A. Lobritz, P. Belenky, C. B. Porter, A. Gutierrez, J. H. Yang, E. G. Schwarz, D. J. Dwyer, A. S. Khalil, J. J. Collins, Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci U S A 112, 8173–8180 (2015)

    Article  Google Scholar 

  • H. Locht, K. A. Krogfelt, Comparison of rheumatological and gastrointestinal symptoms after infection with campylobacter jejuni/coli and enterotoxigenic Escherichia coli. Ann Rheum Dis 61, 448–452 (2002)

    Article  Google Scholar 

  • H. Lu, L. Y. Koo, W. M. Wang, D. A. Lauffenburger, L. G. Griffith, K. F. Jensen, Microfluidic shear devices for quantitative analysis of cell adhesion. Anal Chem 76, 5257–5264 (2004)

    Article  Google Scholar 

  • P. J. Mack, M. R. Kaazempur-Mofrad, H. Karcher, R. T. Lee, R. D. Kamm, Force-induced focal adhesion translocation: effects of force amplitude and frequency. Am J Phys Cell Physiol 287, C954–C962 (2004)

    Article  Google Scholar 

  • G. J. Mahler, M. B. Esch, R. P. Glahn, M. L. Shuler, Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol Bioeng 104, 193–205 (2009)

    Article  Google Scholar 

  • G. J. Mahler, M. B. Esch, E. Tako, T. L. Southard, S. D. Archer, R. P. Glahn, M. L. Shuler, Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol 7, 264–271 (2012)

    Article  Google Scholar 

  • I. Maschmeyer, A. K. Lorenz, K. Schimek, T. Hasenberg, A. P. Ramme, J. Hubner, M. Lindner, C. Drewell, S. Bauer, A. Thomas, N. S. Sambo, F. Sonntag, R. Lauster, U. Marx, A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15, 2688–2699 (2015)

    Article  Google Scholar 

  • P. B. Mcgarvey, H. Huang, R. Mazumder, J. Zhang, Y. Chen, C. Zhang, S. Cammer, R. Will, M. Odle, B. Sobral, M. Moore, C. H. Wu, Systems integration of biodefense omics data for analysis of pathogen-host interactions and identification of potential targets. PLoS One 4, e7162 (2009)

    Article  Google Scholar 

  • D. C. Mills, O. Gundogdu, A. Elmi, M. Bajaj-Elliott, P. W. Taylor, B. W. Wren, N. Dorrell, Increase in campylobacter jejuni invasion of intestinal epithelial cells under low-oxygen coculture conditions that reflect the in vivo environment. Infect Immun 80, 1690–1698 (2012)

    Article  Google Scholar 

  • J. J. Milner, J. Rebeles, S. Dhungana, D. A. Stewart, S. C. Sumner, M. H. Meyers, P. Mancuso & M. A. Beck, Obesity increases mortality and modulates the lung metabolome during pandemic H1N1 influenza virus infection in mice. J Immunol. 194(10), 4846-59 (2015). doi:10.4049/jimmunol.1402295

  • J. Mok, M. N. Mindrinos, R. W. Davis, M. Javanmard, Digital microfluidic assay for protein detection. PNAS 111, 2110–2115 (2014)

    Article  Google Scholar 

  • D. G. Newell, Animal models of Campylobacter jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models. Symp Ser Soc Appl Microbiol ,, 57S–67S (2001)

  • K. K. Nyati, R. Nyati, Role of campylobacter jejuni infection in the pathogenesis of Guillain-Barre syndrome: an update. Biomed Res Int 2013, 852195 (2013)

    Article  Google Scholar 

  • D. A. Ouattara, J. M. Prot, A. Bunescu, M. E. Dumas, B. Elena-Herrmann, E. Leclerc, C. Brochot, Metabolomics-on-a-chip and metabolic flux analysis for label-free modeling of the internal metabolism of HepG2/C3A cells. Mol BioSyst 8, 1908–1920 (2012)

    Article  Google Scholar 

  • J. Parkhill, B. W. Wren, K. Mungall, J. M. Ketley, C. Churcher, D. Basham, T. Chillingworth, R. M. Davies, T. Feltwell, S. Holroyd, K. Jagels, A. V. Karlyshev, S. Moule, M. J. Pallen, C. W. Penn, M. A. Quail, M. A. Rajandream, K. M. Rutherford, A. H. Van Vliet, S. Whitehead, B. G. Barrell, The genome sequence of the food-borne pathogen campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668 (2000)

    Article  Google Scholar 

  • W. Pathmasiri, K. Pratt, D. Collier, L. Lutes, S. Mcritchie, S. Sumner, Integrating metabolomic signatures and psychosocial parameters in responsivity to an immersion treatment model for adolescent obesity. Metabolomics 8, 1037–1051 (2012)

    Article  Google Scholar 

  • J. M. Prot, C. Aninat, L. Griscom, F. Razan, C. Brochot, C. G. Guillouzo, C. Legallais, A. Corlu, E. Leclerc, Improvement of HepG2/C3a cell functions in a microfluidic biochip. Biotechnol Bioeng 108, 1704–1715 (2011)

    Article  Google Scholar 

  • J. M. Prot, A. Bunescu, B. Elena-Herrmann, C. Aninat, L. C. Snouber, L. Griscom, F. Razan, F. Y. Bois, C. Legallais, C. Brochot, A. Corlu, M. E. Dumas, E. Leclerc, Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol 259, 270–280 (2012)

    Article  Google Scholar 

  • Q. Ramadan, H. Jafarpoorchekab, C. Huang, P. Silacci, S. Carrara, G. Koklu, J. Ghaye, J. Ramsden, C. Ruffert, G. Vergeres, M. A. Gijs, NutriChip: nutrition analysis meets microfluidics. Lab Chip 13, 196–203 (2013)

    Article  Google Scholar 

  • E. L. Sanchez, M. Lagunoff, Viral activation of cellular metabolism. Virology 479-480, 609–618 (2015)

    Article  Google Scholar 

  • K. L. Sellgren, E. J. Butala, B. P. Gilmour, S. H. Randell, S. Grego, A biomimetic multicellular model of the airways using primary human cells. Lab Chip 14, 3349–3358 (2014)

    Article  Google Scholar 

  • L. Shintu, R. Baudoin, V. Navratil, J. M. Prot, C. Pontoizeau, M. Defernez, B. J. Blaise, C. Domange, A. R. Pery, P. Toulhoat, C. Legallais, C. Brochot, E. Leclerc, M. E. Dumas, Metabolomics-on-a-chip and predictive systems toxicology in microfluidic bioartificial organs. Anal Chem 84, 1840–1848 (2012)

    Article  Google Scholar 

  • R. W. Snyder, T. R. Fennell, C. J. Wingard, N. P. Mortensen, N. A. Holland, J. H. Shannahan, W. Pathmasiri, A. H. Lewin, S. C. J. Sumner, Distribution and biomarker of carbon-14 labeled fullerene C60 ([14C(U)]C60) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol. 35(12), 1438–51 (2015). doi:10.1002/jat.3177

  • M. Stahl, J. Butcher, A. Stintzi, Nutrient acquisition and metabolism by campylobacter jejuni. Front Cell Infect Microbiol 2, 5 (2012)

    Article  Google Scholar 

  • S. Sumner, R. Snyder, J. Burgess, C. Myers, R. Tyl, C. Sloan, T. Fennell, Metabolomics in the assessment of chemical-induced reproductive and developmental outcomes using non-invasive biological fluids: application to the study of butylbenzyl phthalate. J Appl Toxicol 29, 703–714 (2009)

    Article  Google Scholar 

  • S. C. J. Sumner, T. R. Fennell, R. W. Snyder, G. F. Taylor, A. H. Lewin, Distribution of carbon-14 labeled C60 ([14C]C60) in the pregnant and in the lactating dam and the effect of C60 exposure on the biochemical profile of urine. J Appl Toxicol 30, 354–360 (2010a)

    Google Scholar 

  • S. J. Sumner, J. P. Burgess, R. W. Snyder, J. A. Popp, T. R. Fennell, Metabolomics of urine for the assessment of microvesicular lipid accumulation in the liver following isoniazid exposure. Metabolomics 6, 238–249 (2010b)

    Article  Google Scholar 

  • J. H. Sung, J. Yu, D. Luo, M. L. Shuler, J. C. March, Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11, 389–392 (2011)

    Article  Google Scholar 

  • T. Tuuminen, K. Lounamo, M. Leirisalo-Repo, A review of serological tests to assist diagnosis of reactive arthritis: critical appraisal on methodologies. Front Immunol 4, 418 (2013)

    Article  Google Scholar 

  • M. Villar, N. Ayllon, P. Alberdi, A. Moreno, M. Moreno, R. Tobes, L. Mateos-Hernandez, S. Weisheit, L. Bell-Sakyi & J. De La Fuente, Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol Cell Proteomics. 14(12), 3154–72 (2015). doi:10.1074/mcp.M115.051938.

  • Who. The Global View of Campylobacteriosis - Report of Expert Consultation - Utrecht, Netherlands, 9–11 July 2012. WHO document production services, Geneva, Switzerland. (2013)

  • J. A. Wright, A. J. Grant, D. Hurd, M. Harrison, E. J. Guccione, D. J. Kelly, D. J. Maskell, Metabolite and transcriptome analysis of campylobacter jejuni in vitro growth reveals a stationary-phase physiological switch. Microbiology 155, 80–94 (2009)

    Article  Google Scholar 

  • M. Y. Zhang, P. J. Lee, P. J. Hung, T. Johnson, L. P. Lee, M. R. Mofrad, Microfluidic environment for high density hepatocyte culture. Biomed Microdevices 10, 117–121 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by RTI International internal research funding and National Institute of Diabetes and Digestive and Kidney Diseases (1U24DK097193-01, Dr. Susan Sumner, PI). The authors are grateful to Andrew Novokhatny and Zachery Acuff for providing analytical and statistical assistance with the metabolomics data analysis. The metabolomics data are available at the NIH Common Fund Metabolomics Data Repository and Coordinating Center at the University of California at San Diego (Dr. Shankar Subramaniam, PI) under studies ST000124 and ST000125.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ninell P. Mortensen or Susan J. Sumner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortensen, N.P., Mercier, K.A., McRitchie, S. et al. Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways. Biomed Microdevices 18, 51 (2016). https://doi.org/10.1007/s10544-016-0076-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0076-9

Keywords

Navigation