Skip to main content
Log in

Characterization of steady streaming for a particle manipulation system

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Accurate positioning of biological cells or microscopic particle without directly contacting them is a challenging task in biomedical engineering. Various trapping methods for controlling the position of a particle have been suggested. The common driving methods are based on laser and ultrasonic actuation principles. In this work we suggest a design for a hydrodynamic particle manoeuvring system. The system operates using steady streaming in a viscous fluid media induced by high frequency vibration of piezoelectric cantilevers. A particle within the workspace of the system can be trapped and manipulated to a desired position by the fairly unidirectional flow field created by the beams. In this paper, the flow field in the particle manipulation system is characterized numerically and experimentally. We find that the flow field resembles the analytical solutions of a flow field created by an oscillating sphere. Furthermore, we validate numerically the quadratic relation between the steady streaming velocity and the vibration amplitude of the beam. The calibration of the piezoelectric actuator’s oscillation amplitudes enables effective positioning of particles with a diameter of 20 um to 1 mm. We find that a 30X0.8X2 m m 3 piezoelectric beam vibrating at its first resonance frequency, 200 Hz, is able to move a particle at a typical flow velocity ranging between 0.05 mm/sec and 0.13 mm/s in 430 cSt Si oil (Re=0.2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  • A. Abadi, G. Kosa, Piezoelectric beam for intrabody propulsion controlled by embedded sensing. In print in Mechatronics, IEEE/ASME Transactions (2016)

  • A. Ainla, G.D.M. Jeffries, R. Brune, O. Orwar, A. Jesorka, A multifunctional pipette. Lab. Chip. 12(7), 1255–1261 (2012)

    Article  Google Scholar 

  • M.A. Barber, A new method of isolating micro-organisms. J. Kansas Med. Sot. 4, 489–494 (1904)

    Google Scholar 

  • R.W. Bowman, G. M. Gibson, A. Linnenberger, D.B. Phillips, J.A. Grieve, D.M. Carberry, S. Serati, M.J. Miles, M. J. Padgett, Red tweezers: Fast, customisable hologram generation for optical tweezers. Comput. Phys. Commun. 185(1), 268–273 (2014)

    Article  Google Scholar 

  • J. Castillo, M. Dimaki, W. E. Svendsen, Manipulation of biological samples using micro and nano techniques. Integr. Biol. 1(1), 30–42 (2009)

    Article  Google Scholar 

  • K. Chong, S.D. Kelly, S. Smith, J.D. Eldredge, Inertial particle trapping in viscous streaming. Phys. Fluids. 25(3), 003622 (2013)

    Article  Google Scholar 

  • J. P. Desai, A. Pillarisetti, A.D. Brooks, Engineering approaches to biomanipulation. Annu. Rev. Biomed. Eng. 9, 35–53 (2007)

    Article  Google Scholar 

  • E. Diller, J. Giltinan, G.Z. Lum, Z. Ye, S. Metin, Six-degree-of-freedom magnetic actuation for wireless microrobotics The International Journal of Robotics Research page 0278364915583539 (2015)

  • T. Fukuda, F. Arai, M. Nakajima, Micro-nanorobotic manipulation systems and their applications Springer Science & Business Media (2013)

  • C. Gosse, V. Croquette, Magnetic tweezers: micrOmanipulation and force measurement at the molecular level. Biom. J. 82(6), 3314–3329 (2002)

    Google Scholar 

  • D.G. Grier, Y. Roichman, Holographic optical trapping. Appl. Opt. 45(5), 880–887 (2006)

    Article  Google Scholar 

  • B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell, J. Nilsson, Non-contact acoustic cell trapping in disposable glass capillaries. Lab Chip. 10(17), 2251–2257 (2010)

    Article  Google Scholar 

  • T. Hayakawa, S. Sakuma, F. Arai, On-chip 3d rotation of oocyte based on a vibration-induced local whirling flow. Microsystems & Nanoengineering, volume 1 (2015)

  • J. Holtsmark, I. Johnsen, S. To, S. Skavlem, Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid. J. Acoust. Soc. Am. 26(1), 26–39 (1954)

    Article  MathSciNet  Google Scholar 

  • T.A. House, V.H. Lieu, D.T. Schwartz, A model for inertial particle trapping locations in hydrodynamic tweezers arrays. J. Micromech. Microeng. 24(4), 045–019 (2014)

    Article  Google Scholar 

  • J.S. Jeong, J.W. Lee, C.Y. Lee, S.Y. Teh, A. Lee, K. Kirk Shung, Particle manipulation in a microfluidic channel using acoustic trap. Biomed. Microdevices. 13(4), 779–788 (2011)

    Article  Google Scholar 

  • L. Johansson, Acoustic manipulation of particles and fluids in microfluidic systems (2009)

  • A. Karimi, S. Yazdi, A.M. Ardekani, Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics. 7(2), 021–501 (2013)

    Article  Google Scholar 

  • I.S.M. Khalil, V. Magdanz, S. Sanchez, O.G. Schmidt, S. Misra, E. Ben-Jacob, Wireless magnetic-based closed-loop control of self-propelled microjets. PloS one. 9(2), e83053 (2014)

    Article  Google Scholar 

  • I.S.M. Khalil, M.P. Pichel, L. Abelmann, S. Misra, Closed-loop control of magnetotactic bacteria. Int. J. Robot. Res. 32(6), 637–649 (2013)

    Article  Google Scholar 

  • K. Khoshmanesh, S. Nahavandi, S. Baratchi, A. Mitchell, K. Kalantar-zadeh, Dielectrophoretic platforms for bio-microfluidic systems. Biosensors and Bioelectronics. 26(5), 1800–1814 (2011)

    Article  Google Scholar 

  • S. Kim, F. Shafiei, D. Ratchford, X. Li, Controlled afm manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology. 22(11), 115–301 (2011)

    Article  Google Scholar 

  • V. Korzh, U. Strähle, Marshall barber and the century of microinjection: from cloning of bacteria to cloning of everything. Differentiation. 70(6), 221–226 (2002)

    Article  Google Scholar 

  • G. Kósa, M. Shoham, Z. Menashe, Propulsion method for swimming microrobots. IEEE Trans. Robot. 23(1), 137–150 (2007)

    Article  Google Scholar 

  • J.-S. Kwon, S.T. Wereley, Towards new methodologies for manipulation of colloidal particles in a miniaturized fluidic device: optoelectrokinetic manipulation technique. J. Fluids Eng. 135(2), 021–306 (2013)

    Article  Google Scholar 

  • J. Lee, S.-Y. Teh, A. Lee, H.H. Kim, C. Lee, K.K. Shung, Single beam acoustic trapping. Appl. Phys. Lett. 95(7), 073–701 (2009)

    Google Scholar 

  • J. Lighthill, Acoustic streaming. J. Sound Vib. 61(3), 391–418 (1978)

    Article  MATH  Google Scholar 

  • B.R. Lutz, J. Chen, D.T. Schwartz, Hydrodynamic tweezers: 1. noncontact trapping of single cells using steady streaming microeddies. Anal. Chem. 78(15), 5429–5435 (2006)

    Article  Google Scholar 

  • V. Marx, Biophysics: using sound to move cells. Nat. Methods. 12(1), 41–44 (2015)

    Article  Google Scholar 

  • L. Meirovitch, R.G. Parker, Fundamentals of vibrations. Appl. Mech. Rev. 54, 100 (2001)

    Article  Google Scholar 

  • K.C. Neuman, A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. methods. 5(6), 491–505 (2008)

    Article  Google Scholar 

  • P. Neuži, S. Giselbrecht, K. Länge, T.J. Huang, A. Manz, Revisiting lab-on-a-chip technology for drug discovery. Nat. Rev. Drug Discov. 11(8), 620–632 (2012)

    Article  Google Scholar 

  • S. Oberti, D. Moeller, A. Neild, J. Dual, F. Beyeler, B.J. Nelson, S. Gutmann, Strategies for single particle manipulation using acoustic and flow fields. Ultrasonics. 50(2), 247–257 (2010)

    Article  Google Scholar 

  • C. Qian, H. Huang, L. Chen, X. Li, Z. Ge, T. Chen, Z. Yang, L. Sun, Dielectrophoresis for bioparticle manipulation. Int. J. Mol. Sci. 15(10), 18281–18309 (2014)

    Article  Google Scholar 

  • N. Riley, Oscillating viscous flows. Mathematika. 12(02), 161–175 (1965)

    Article  MathSciNet  Google Scholar 

  • N. Riley, Steady streaming. Annu. Rev. Fluid Mech. 33(1), 43–65 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Sajeesh, A. Kumar Sen, Particle separation and sorting in microfluidic devices: a review. Microfluidics and nanofluidics. 17(1), 1–52 (2014)

    Article  Google Scholar 

  • H. Schlichting, B. ebener, Berechnung ebener periodischer grenzschichtströmungen. Phys. Z. 33(1932), 327–335 (1932)

    MATH  Google Scholar 

  • E.B. Steager, M.S. Sakar, C. Magee, M. Kennedy, A. Cowley, V Kumar, Automated biOmanipulation of single cells using magnetic microrobots. Int. J. Rob. Res. 32(3), 346–359 (2013)

    Article  Google Scholar 

  • J.T. Stuart, Unsteady boundary layers(unsteady boundary layer flow, considering stokes, rayleigh and heisenberg-tollmien theories application to oscillatory, fluctuating, impulsive and rotational effects). Recent research on unsteady boundary layers (1972)

  • E.B. Tadmor, G. Kósa, Electromechanical coupling correction for piezoelectric layered beams. J. Microelectron. Syst. 12(6), 899–906 (2003)

    Article  Google Scholar 

  • M. Tanyeri, C.M. Schroeder, Manipulation and confinement of single particles using fluid flow. Nano Lett. 13(6), 2357–2364 (2013)

    Article  Google Scholar 

  • Y. Temiz, R.D. Lovchik, G.V. Kaigala, E. Delamarche, Lab-on-a-chip devices how to close and plug the lab? Microelectron. Eng. 132, 156–175 (2015)

    Article  Google Scholar 

  • W. Thielicke, E. J. Stamhuis. Pivlabtime-resolved digital particle image velocimetry tool for matlab (version. 1, 35 (2014) http://pivlab.blogspot.co.il/

  • W. Thielicke, E. J. Stamhuis, Pivlab–towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. Journal of Open Research Software. 2(1), e30 (2014)

    Google Scholar 

  • M. Van Dyke, An album of fluid motion (1982)

  • C.-Y. Wang, On high-frequency oscillatory viscous flows. J. Fluid Mech. 32(01), 55–68 (1968)

    Article  MATH  Google Scholar 

  • J. Wang, W. Gao, Nano/microscale motors: biomedical opportunities and challenges. ACS nano. 6(7), 5745–5751 (2012)

    Article  Google Scholar 

  • X. Tiantian, Y. Jiangfan, X. Yan, H. Choi, L. Zhang, Magnetic actuation based motion control for microrobots An overview. Micromachines. 6(9), 1346–1364 (2015)

    Article  Google Scholar 

  • Y. Yalikun, A. Toshifumi, Y. Kanda, K. Morishima, in Non-contact 3d rotation and capture method for bio-object based on microfluidic stream. in Micro-NanoMechatronics and Human Science (MHS), 2014 International Symposium on, pages 1–4. IEEE, (2014)

  • Z. Ye, C. Edington, A.J. Russell, M. Sitti, in Versatile non-contact micro-manipulation method using rotational flows locally induced by magnetic microrobots. in Advanced Intelligent Mechatronics (AIM), 2014 IEEE/ASME International Conference on, pages 26–31. IEEE, (2014)

  • H. Zhang, K.-K. Liu, Optical tweezers for single cells. J. R. Soc. Interface. 5(24), 671–690 (2008)

    Article  Google Scholar 

  • X. Zhang, L. Ma, Y. Zhang, High-resolution optical tweezers for single-molecule manipulation. Yale J. Biol. Med. 86(3), 367 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor Kosa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(WMV 8.17 MB)

(WMV 7.73 MB)

(AVI 18.3 MB )

(WMV 4.11 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amit, R., Abadi, A. & Kosa, G. Characterization of steady streaming for a particle manipulation system. Biomed Microdevices 18, 39 (2016). https://doi.org/10.1007/s10544-016-0055-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0055-1

Keywords

Navigation