Skip to main content
Log in

Confinement dependent chemotaxis in two-photon polymerized linear migration constructs with highly definable concentration gradients

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Dendritic cell chemotaxis is known to follow chemoattractant concentration gradients through tissue of heterogeneous pore sizes, but the dependence of migration velocity on pore size and gradient steepness is not fully understood. We enabled chemotaxis studies for at least 42 hours at confinements relevant to tissue models by two-photon polymerization of linear channel constructs with cross-sections from 10 × 10 μm2 to 20 × 20 μm2 inside commercially available chemotaxis analysis chips. Faster directed migration was observed with decreasing channel dimensions despite substantial cell deformation in the narrower channels. Finite element modeling of a cell either partly or fully obstructing chemokine diffusion in the narrow channels revealed strong local accentuation of the chemokine concentration gradients. The modeled concentration differences across a cell correlated well with the observed velocity dependence on channel cross-section. However, added effects due to spatial confinement could not be excluded. The design freedom offered by two-photon polymerization was exploited to minimize the accentuated concentration gradients in cell-blocked channels by introducing “venting slits” to the surrounding medium at a length scale too small (≤500 nm) for the cells to explore, thereby decoupling effects of concentration gradients and spatial confinement. Studies in slitted 10 × 10 μm2 channels showed significantly reduced migration speeds indistinguishable from speeds observed in unslitted 20 × 20 μm2 channel. This result agrees with model predictions of very small concentration gradient variations in slitted channels, thus indicating a strong influence of the concentration gradient steepness, not the channel size, on the directed migration velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • A. Aman, T. Piotrowski, Dev Biol 341, 20 (2010)

    Article  Google Scholar 

  • V. Ambravaneswaran, I.Y. Wong, A.J. Aranyosi, M. Toner, D. Irimia, Integr Biol (Camb) 2, 639 (2010)

    Article  Google Scholar 

  • G. Faure-Andre, P. Vargas, M. Yuseff, M. Heuze, J. Diaz, D. Lankar, V. Steri, J. Manry, S. Hugues, F. Vascotto, J. Boulanger, G. Raposo, M. Bono, M. Rosemblatt, M. Piel, A. Lennon-Dumenil, Science 322, 1705 (2008)

    Article  Google Scholar 

  • R.N. Germain, E.A. Robey, M.D. Cahalan, Science 336, 1676 (2012)

    Article  Google Scholar 

  • U. Haessler, M. Pisano, M. Wu, M.A. Swartz, Proc Natl Acad Sci U S A 108, 5614 (2011)

    Article  Google Scholar 

  • A. Hill, J Physiol 40, 4 (1910)

    Google Scholar 

  • D. Irimia, G. Charras, N. Agrawal, T. Mitchison, M. Toner, Lab Chip 7, 1783 (2007)

    Article  Google Scholar 

  • J. Jacobelli, R.S. Friedman, M.A. Conti, A. Lennon-Dumenil, M. Piel, C.M. Sorensen, R.S. Adelstein, M.F. Krummel, Nat Immunol 11, 953 (2010)

    Article  Google Scholar 

  • H. Jonuleit, U. Kühn, G. Müller, K. Steinbrink, L. Paragnik, E. Schmitt, J. Knop, A.H. Enk, Eur J Immunol 27, 3135 (1997)

    Article  Google Scholar 

  • T. Laemmermann, B.L. Bader, S.J. Monkley, T. Worbs, R. Wedlich-Soeldner, K. Hirsch, M. Keller, R. Foerster, D.R. Critchley, R. Faessler, M. Sixt, Nature 453, 51 (2008)

    Article  Google Scholar 

  • C.N. LaFratta, J.T. Fourkas, T. Baldacchini, R.A. Farrer, Angew Chem Int Ed 46, 6238 (2007)

    Article  Google Scholar 

  • N. Li, M. Schwartz, C. Ionescu-Zanetti, J Biomol Screen 14, 194 (2009)

    Article  Google Scholar 

  • C. Miller, Proc R Soc Lond A 106, 724 (1924)

    Article  Google Scholar 

  • A. Ogston, B. Preston, J. Wells, Proc R Soc Lond A 333, 297 (1973)

    Article  Google Scholar 

  • M.H. Olsen, G.M. Hjorto, M. Hansen, O. Met, I.M. Svane, N.B. Larsen, Lab Chip 13, 4800 (2013)

    Article  Google Scholar 

  • W.S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA. (1997–2012), http://imagej.nih.gov/ij/

  • P.J. Sarvaiya, D. Guo, I. Ulasov, P. Gabikian, M.S. Lesniak, Oncotarget 4, 2171 (2013)

    Google Scholar 

  • P. Thevenaz, U.E. Ruttimann, M. Unser, IEEE Trans Image Process 7, 27 (1998)

    Article  Google Scholar 

  • Y. Wang, D.J. Irvine, Integr Biol (Camb) 5, 481 (2013)

    Article  Google Scholar 

  • M. Weber, R. Hauschild, J. Schwarz, C. Moussion, I. de Vries, D.F. Legler, S.A. Luther, T. Bollenbach, M. Sixt, Science 339, 328 (2013)

    Article  Google Scholar 

  • B. Welch, Biometrika 34, 28 (1947)

    MATH  MathSciNet  Google Scholar 

  • K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A.L. Willis, R.M. Hoffman, C.G. Figdor, S.J. Weiss, P. Friedl, J Cell Biol 201, 1069 (2013)

    Article  Google Scholar 

  • K. Wolf, S. Alexander, V. Schacht, L.M. Coussens, U.H. von Andrian, J. van Rheenen, E. Deryugina, P. Friedl, Semin Cell Dev Biol 20, 931 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Esben Kjær Unmack Larsen for assistance with photochemical modification of chip surfaces with PEGDA. We acknowledge financial support from the Danish Council for Independent Research, Technology and Production Sciences, grant# 09-070021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels B. Larsen.

Additional information

Gertrud Malene Hjortø and Mark Holm Olsen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(AVI 7403 kb)

ESM 2

(AVI 4463 kb)

ESM 3

(AVI 7209 kb)

ESM 4

(AVI 6049 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hjortø, G.M., Olsen, M.H., Svane, I.M. et al. Confinement dependent chemotaxis in two-photon polymerized linear migration constructs with highly definable concentration gradients. Biomed Microdevices 17, 30 (2015). https://doi.org/10.1007/s10544-015-9937-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9937-x

Keywords

Navigation