Skip to main content

Advertisement

Log in

Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this work, we have demonstrated an efficient optical immunoassay technique for the detection of a food-borne pathogen, Listeria monocytogenes, using a Mach-Zehnder Interferometer (MZI) configuration. We have investigated ten different MZI configurations with angular and Sbend Y-junction geometries. An efficient Hydrofluoric acid (HF) based technique was used for rapid and specific binding of L. monocytogenes to the sensor arm of the MZI biosensor. The MZI biosensor was able to detect L. monocytogenes at concentrations of the order of 105 CFU/ml, which is lower than the infection dose for healthy human beings. SEM analysis and light intensity measurements showed the biosensor is highly selective to L. monocytogenes over other microbial species (such as Escherichia coli). Finally, a novel calibration scheme of the MZI biosensor was developed from experimental data that can be used for determining unknown concentrations of L. monocytogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • C. Almeida, N.F. Azevedo, S. Santos, C.W. Keevil, M.J. Vieira, Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (pna fish). PLoS One 6(3), e14786 (2011)

    Article  Google Scholar 

  • P. Aureli, G.C. Fiorucci, D. Caroli, G. Marchiaro, O. Novara, L. Leone, S. Salmaso, An outbreak of febrile gastroenteritis associated with corn contaminated by listeria monocytogenes. N. Engl. J. Med. 342(17), 1236–1241 (2000)

    Article  Google Scholar 

  • M.-J. Bañuls, V. González-Pedro, C.A. Barrios, R. Puchades, Á. Maquieira, Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors. Biosens. Bioelectron. 25(6), 1460–1466 (2010)

    Google Scholar 

  • A.A. Boiarski, J.R. Busch, B.S. Bhullar, R.W. Ridgway, V.E. Wood, Integrated Optic Sensor with Macro-Flow Cell. Fibers’ 92 (International Society for Optics and Photonics, 1993), pp. 199–211

  • F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, K. Cammann, A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder Interferometer on silicon. Sensors Actuators B Chem. 44(1–3), 350–355 (1997)

    Article  Google Scholar 

  • R. Bruck, E. Melnik, P. Muellner, R. Hainberger, M. Lämmerhofer, Integrated polymer-based Mach-Zehnder Interferometer label-free streptavidin biosensor compatible with injection molding. Biosens. Bioelectron. 26(9), 3832–3837 (2011)

    Google Scholar 

  • F. Cattaruzza, A. Cricenti, A. Flamini, M. Girasole, G. Longo, A. Mezzi, T. Prosperi, Carboxylic acid terminated monolayer formation on crystalline silicon and silicon nitride surfaces. a surface coverage determination with a fluorescent probe in solution. J. Mater. Chem. 14(9), 1461–1468 (2004)

    Article  Google Scholar 

  • C.D. Chin, V. Linder, S.K. Sia, Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip. 7(1), 41–57 (2007)

    Article  Google Scholar 

  • C.B. Dalton, C.C. Austin, J. Sobel, P.S. Hayes, W.F. Bibb, L.M. Graves, P.M. Griffin, An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N. Engl. J. Med. 336(2), 100–106 (1997)

    Article  Google Scholar 

  • C.W. Donnelly, Listeria monocytogenes: a continuing challenge. Nutr. Rev. 59(6), 183–194 (2001)

    Article  Google Scholar 

  • P.K.B. Embarek, Presence, detection and growth of Listeria monocytogenesin seafoods: a review. Int. J. Food Microbiol. 23(1), 17–34 (1994)

    Article  Google Scholar 

  • D. Esinenco, S. Psoma, M. Kusko, A. Schneider, R. Muller, Su-8 micro-biosensor based on Mach-Zehnder Interferometer. Rev. Adv. Mater. Sci. 10(4), 295–299 (2005)

    Google Scholar 

  • X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta. 620(1), 8–26 (2008)

    Article  Google Scholar 

  • D.M. Frye, R. Zweig, J. Sturgeon, M. Tormey, M. LeCavalier, I. Lee, L. Lawani, L. Mascola, An outbreak of febrile gastroenteritis associated with delicatessen meat contaminated with listeria monocytogenes. Clin. Infect. Dis. 35(8), 943–949 (2002)

    Article  Google Scholar 

  • I. Fuchizawa, S. Shimizu, M. Ootsubo, Y. Kawai, K. Yamazaki, Specific and rapid quantification of viable listeria monocytogenes using fluorescence in situ hybridization in combination with filter cultivation. Microbes Environ./JSME. 24(3), 273–275 (2009)

    Google Scholar 

  • T. Geng, M.T. Morgan, A.K. Bhunia, Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Appl. Environ. Microbiol. 70, 6138–6146 (2004)

    Article  Google Scholar 

  • D. Griffiths, G. Hall, Biosensors–what real progress is being madeTrends Biotechnol. 11(4), 122–130 (1993)

    Article  Google Scholar 

  • N.S.K. Gunda, M. Singh, Y. Purwar, S.L. Shah, K. Kaur, S.K. Mitra, Micro-spot with integrated pillars (MSIP) for detection of dengue virus NS1. Biomed. Microdevices (2013). doi:10.1007/s10544-013-9787-3

  • R. Heady, J. Cahn, Experimental test of classical nucleation theory in a liquid-liquid miscibility gap system. J. Chem. Phys. 58, 896 (1973)

    Article  Google Scholar 

  • R. Heideman, P. Lambeck, Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated mach–zehnder interferometer system. Sensors Actuators B Chem. 61(1), 100–127 (1999)

    Article  Google Scholar 

  • R. Heideman, R. Kooyman, J. Greve, Performance of a highly sensitive optical waveguide Mach-Zehnder Interferometer immunosensor. Sensors Actuators B Chem. 10(3), 209–217 (1993)

    Article  Google Scholar 

  • S. Hearty, P. Leonard, J. Quinn, R. Oennedy, Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. J. Microbiol. Methods. 66, 294–312 (2006)

    Article  Google Scholar 

  • D. Ivnitski, I. Abdel-Hamid, P. Atanasov, E. Wilkins, Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 14(7), 599–624 (1999)

    Google Scholar 

  • M. Karymov, A. Kruchinin, Y.A. Tarantov, I. Balova, L. Remisova, Y.G. Vlasov, Fixation of dna directly on optical waveguide surfaces for molecular probe biosensor development. Sensors Actuators B Chem. 29(1), 324–327 (1995)

    Article  Google Scholar 

  • H.-J. Kim, J.-C. Cho, Simple and rapid detection of Listeria monocytogenes in fruit juice by real-time pcr without enrichment culture. Food Control. 21(10), 1419–1423 (2010)

    Article  Google Scholar 

  • P. Kotzekidou, Survey of listeria monocytogenes, salmonella spp. and escherichia coli o157:h7 in raw ingredients and ready-to-eat products by commercial real-time pcr kits. Food Microbiol. 35(2), 86–91 (2013)

    Article  Google Scholar 

  • V. Koubov, E. Brynda, L. Karasov, J. Kvor, J. Homola, J. Dostlek, P. Tobika, J. Roick, Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensors Actuators B Chem. 74, 100–105 (2001)

    Article  Google Scholar 

  • P. Leonard, S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty, R. OKennedy, Advances in biosensors for detection of pathogens in food and water. Enzym. Microb. Technol. 32(1), 3–13 (2003)

    Article  Google Scholar 

  • P. Leonard, S. Hearty, J. Quinn, R. Oennedy, A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens. Bioelectron. 19, 1331–1335 (2004)

    Google Scholar 

  • P. MacDonald, R. Whitwam, J. Boggs, J. Reardon, R. Saah, M. Beatty, J. Sobel, L. Graves, S. Hunter, J. MacCormack, in Clinical Infectious Diseases. Outbreak of Listeria-Associated Birth Complications Linked with Homemade Mexican-Style Cheese, North Carolina, 2000, vol. 33 (Univ Chicago Press, Chicago, 2001), pp. 1236–1236

  • M. Marazuela, M. Moreno-Bondi, Fiber-optic biosensors–an overview. Anal. Bioanal. Chem. 372(5–6), 664–682 (2002)

    Article  Google Scholar 

  • J. Mattingly, B. Butman, M. Plank, R. Durham, B. Robison et al., Rapid monoclonal antibody-based enzyme-linked immunosorbent assay for detection of listeria in food products. J. Assoc. Off. Anal. Chem. 71(3), 679–681 (1987)

    Google Scholar 

  • V Menon, R Donovan, Handbook of Semiconductor Wafer Cleaning Technology (Noyes Publication, New Jersey, 1993)

    Google Scholar 

  • Y. Moreno, L. Ballesteros, J. García-Hernández, P. Santiago, A. González, M.A. Ferrús, Specific detection of viable Listeria monocytogenes in spanish wastewater treatment plants by fluorescent in situ hybridization and pcr. Water Res. 45(15), 4634–4640 (2011)

    Article  Google Scholar 

  • R. Müller, P. Obreja, M. Kusko, D. Esinenco, C. Tibeica, G. Conache, L. Buia, D. Apostol, V. Damian, M. Mateescu, et al., in Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies II. Su 8 used as Optical Waveguide in Integrated Optical Microsensor for Biological Applications (International Society for Optics and Photonics, 2005) pp. 59720Z–59720Z

  • E. Omiccioli, G. Amagliani, G. Brandi, M. Magnani, A new platform for real-time pcr detection of Salmonella spp., Listeria monocytogenes and Escherichia coli o157 in milk. Food Microbiol. 26(6), 615–622 (2009)

    Article  Google Scholar 

  • B.P. Pal, Fundamentals of Fibre Optics in Telecommunication and Sensor Systems (Bohem Press, 1992)

  • O. Parriaux, G. Veldhuis, Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors. J. Light. Technol. 16(4), 573–582 (1998)

    Article  Google Scholar 

  • J. Pochop, M. Kačániová, L. Hleba, L. Lopasovskỳ, A. Bobková, L. Zeleňáková, M. Stričík, Detection of listeria monocytogenes in ready-to-eat food by step one real-time polymerase chain reaction. J. Environ. Sci. Health B 47(3), 212–216 (2012)

    Article  Google Scholar 

  • A. Rohrbach, Observing secretory granules with a multiangle evanescent wave microscope. Biophys. J. 78(5), 2641–2654 (2000)

    Article  Google Scholar 

  • C.A. Rowe, S.B. Scruggs, M.J. Feldstein, J.P. Golden, F.S. Ligler, An array immunosensor for simultaneous detection of clinical analytes. Anal. Chem. 71, 433–439 (1999)

    Article  Google Scholar 

  • D. Sarkar, I. Jamal, S.K. Mitra, Analysis, design and fabrication of optical waveguides for mach-zehnder interferometry. Opt. Commun. 311, 338–345 (2013)

    Article  Google Scholar 

  • W.F. Schlech, D. Acheson, Foodborne listeriosis. Clin. Infect. Dis. 31(3), 770–775 (2000)

    Article  Google Scholar 

  • B. Sepulveda, J.S. Del Rio, M. Moreno, F. Blanco, K. Mayora, C. Domínguez, L.M. Lechuga, Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder Interferometer devices. J. Opt. A Pure Appl. Opt. 8(7), S561 (2006)

    Article  Google Scholar 

  • A. Sewell, D. Warburton, A. Boville, E. Daley, K. Mullen, The development of an efficient and rapid enzyme linked fluorescent assay method for the detection of Listeria spp. from foods. Int. J. Food Microbiol. 81(2), 123–129 (2003)

    Article  Google Scholar 

  • B. Shu, C. Zhang, D. Xing, Highly sensitive identification of foodborne pathogenic listeria monocytogenes using single-phase continuous-flow nested pcr microfluidics with on-line fluorescence detection. Microfluid. Nanofluid. 15(2), 161–172 (2013)

    Article  Google Scholar 

  • L. Su, W. Jia, C. Hou, Y. Lei, Microbial biosensors: a review. Biosens. Bioelectron. 26(5), 1788–1799 (2011)

    Google Scholar 

  • T.B. Tims, S.S. Dickey, D.R. Demarco, D.V. Lim, Detection of low levels of listeria monocytogenes within 20 hours using an evanescent wave biosensor. Am. Clin. Lab. 20(8), 28–31 (2001)

    Google Scholar 

  • U. Traunšek, N. Toplak, B. Jerṡek, A. Lapanje, T. Majstorović, M. Kovaċ, Novel cost-efficient real-time pcr assays for detection and quantitation of Listeria monocytogenes. J. Microbiol. Methods. 85(1), 40–46 (2011)

    Article  Google Scholar 

  • S. Ueda, Y. Kuwabara, Evaluation of an enzyme-linked fluorescent assay for the detection of listeria monocytogenes from food. Biocontrol Sci. 15(3), 91–95 (2010)

    Article  Google Scholar 

  • K.R. Williams, R.S. Muller, Etch rates for micromachining processing. J. Microelectromech. Syst. 5(4), 256–269 (1996)

    Article  Google Scholar 

  • K. Zinoviev, L.G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, L.M. Lechuga, in Advances in Optical Technologies, 2008. Silicon Photonic Biosensors for Lab-on-a-chip Applications (2008)

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Natural Sciences and Engineering Council-Collaborative Research and Development (NSERC-CRD) program and AQL Management Consulting, Inc. We also gratefully acknowledge the useful discussions with Stefania Dante, PhD student at Research Center on Nanoscience and Nanotechnology(CIN2), Spanish National Research Council (CSIC), Barcelona, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushanta K. Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, D., Gunda, N.S.K., Jamal, I. et al. Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes . Biomed Microdevices 16, 509–520 (2014). https://doi.org/10.1007/s10544-014-9853-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9853-5

Keywords

Navigation