Skip to main content
Log in

Quantification of platelet-surface interactions in real-time using intracellular calcium signaling

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Platelets get easily activated when in contact with a surface. Therefore in the design of microfluidic blood analysis devices surface activation effects have to be taken into account. So far, platelet-surface interactions have been quantified by morphology changes, membrane marker expression or secretion marker release. In this paper we present a simple and effective method that allows quantification of platelet-surface interactions in real-time. A calcium indicator was used to visualize intracellular calcium variations during platelet adhesion. We designated cells that showed a significant increase in cytosolic calcium as responding cells. The fraction of responding cells upon binding was analyzed for different types of surfaces. Thereafter, the immobilized platelets were chemically stimulated and the fraction of responding cells was analyzed. Furthermore, the time between the binding or chemical stimulation and the increased cytosolic calcium level (i.e. the response delay time) was measured. We used surface coatings relevant for platelet-function testing including Poly-L-lysine (PLL), anti-GPIb and collagen as well as control coatings such as Bovine Serum Albumin (BSA) and mouse immunoglobulin (IgG). We found that a lower percentage of responding cells upon binding, results in a higher percentage of responding cells upon chemical stimulation after binding. The measured delay time between platelet binding under sedimentation and calcium response was the lowest on a PLL-coated surface, followed by an anti-GPIb and collagen-coated surface and IgG-coated surface. The presented method provides real-time information of platelet-surface interactions on a single cell as well as on a cell ensemble level. For future in-vitro diagnostic tests, this real-time single-cell function analysis can reveal heterogeneities in the biological processes of a cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • L. Basabe-Desmonts, G. Meade, D. Kenny, New trends in bioanalytical microdevices to assess platelet function. Exp. Rev. Mol. Diagn. (2010)

  • I. Canobbio, C. Balduini, M. Torti, Signalling through the platelet glycoprotein Ib-V-IX complex. Cell. Signal. 16(12), 1329–1344 (2004). doi:10.1016/j.cellsig.2004.05.008

    Article  Google Scholar 

  • B.S. Coller, Biochemical and electrostatic considerations in primary platelet aggregation. Ann. N. Y. Acad. Sci. 416, 693–708 (1983)

    Article  Google Scholar 

  • L.E. Corum, C.D. Eichinger, T.W. Hsiao, V. Hlady, Using microcontact printing of fibrinogen to control surface-induced platelet adhesion and activation. Langmuir Acs J. Surf. Coll. 27(13), 8316–8322. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21657213 (2011)

  • M. Do Ceu Monteiro, F. Sansonetty, M. Jose Gonçalves, O. Connor, Flow cytometric kinetic assay of calcium mobilization in whole blood platelets using fluo-3 and CD41. Cytometry 310, 302–310 (1999)

    Google Scholar 

  • C.H. Gemmell, Platelet adhesion onto artificial surfaces: inhibition by benzamidine, pentamidine, and pyridoxal-5-phosphate as demonstrated by flow cytometric quantification of platelet adhesion to microspheres. J. Lab. Clin. Med. 131(1), 84–92. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9452131 (1998)

    Google Scholar 

  • K.M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström et al., Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions. Biosens. Bioelectron. 23(2), 261–268 (2007). doi:10.1016/j.bios.2007.04.009

    Article  Google Scholar 

  • J.J.M.L. Hoffmann, J.W.N. Akkerman, H.K, Nieuwenhuis, M.A.M. Overbeeke, Hematologie. (Bohn Staflue Van Loghum, 1998)

  • J.F. Hussain, M.P. Mahaut-Smith, Reversible and irreversible intracellular Ca2+ spiking in single isolated human platelets. J. Physiol. 514(3), 713–718 (1999)

    Article  Google Scholar 

  • M. Ikeda, H. Ariyoshi, J. Kambayashi, M. Sakon, T. Kawasaki, M. Monden, Simultaneous digital imaging analysis of cytosolic calcium and morphological change in platelets activated by surface contact. J. Cell. Biochem. 61(2), 292–300 (1996). doi:10.1002/(SICI)1097-4644(19960501)61:2<292::AID-JCB12>3.0.CO;2-O

    Article  Google Scholar 

  • C.R. Ill, E. Engvall, E. Ruoslahti, Adhesion of platelets to laminin in the absence of activation. J. Cell Biol. 99, 2140–2145 (1984)

    Article  Google Scholar 

  • A.S. Kantak, B.K. Gale, Y. Lvov, S.A. Jones, Platelet function analyzer: shear activation of platelets in microchannels. Biomed. Microdev. 5(3), 207–215. Retrieved from http://www.springerlink.com/content/j81274211x2u2208/ (2003)

  • A. Kasirer-Friede, M.R. Cozzi, M. Mazzucato, L. De Marco, Z.M. Ruggeri, S.J. Shattil, Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood 103(9), 3403–3411 (2004). doi:10.1182/blood-2003-10-3664

    Article  Google Scholar 

  • Q.-L. Li, N. Huang, J. Chen, G. Wan, A. Zhao, J. Chen et al., Anticoagulant surface modification of titanium via layer-by-layer assembly of collagen and sulfated chitosan multilayers. J. Biomed. Mater. Res. Part A 89(3), 575–584 (2009). doi:10.1002/jbm.a.31999

    Article  Google Scholar 

  • B. Lincoln, A.J. Ricco, N.J. Kent, L. Basabe-Desmonts, L.P. Lee, B.D. MacCraith et al., Integrated system investigating shear-mediated platelet interactions with von Willebrand factor using microliters of whole blood. Anal. Biochem. 405(2), 174–183 (2010). doi:10.1016/j.ab.2010.05.030

    Article  Google Scholar 

  • P. Mangin, Y. Yuan, I. Goncalves, A. Eckly, M. Freund, J.-P. Cazenave et al., Signaling role for phospholipase C gamma 2 in platelet glycoprotein Ib alpha calcium flux and cytoskeletal reorganization. Involvement of a pathway distinct from FcR gamma chain and Fc gamma RIIA. J. Biol. Chem. 278(35), 32880–32891 (2003). doi:10.1074/jbc.M302333200

    Article  Google Scholar 

  • Mazzucato, M., Pradella, P., Cozzi, M.R., Marco, L. De, & Ruggeri, Z.M. (2011). Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ib α mechanoreceptor. Platelets, 2793–2800. doi:10.1182/blood-2002-02-0514

  • A.D. Michelson, Platelets (Second Edi.). (Academic Press, 2007)

  • W.S. Nesbitt, S.P. Jackson, Imaging signaling processes in platelets. Blood Cells Mol. Dis. 36(2), 139–144 (2006). doi:10.1016/j.bcmd.2005.12.009

    Article  Google Scholar 

  • W.S. Nesbitt, S. Kulkarni, S. Giuliano, I. Goncalves, S.M. Dopheide, C.L. Yap et al., Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J. Biol. Chem. 277(4), 2965–2972 (2002). doi:10.1074/jbc.M110070200

    Article  Google Scholar 

  • B. Nieswandt, S.P. Watson, Platelet-collagen interaction: is GPVI the central receptor? Blood 102(2), 449–461 (2003). doi:10.1182/blood-2002-12-3882

    Article  Google Scholar 

  • J.M. Peula-Garcia, R. Hidaldo-Alvarex, F.J. Nieves de las, Protein co-adsorption on different polystyrene latexes: electrokinetic characterization and colloidal stability. Coll. Polym. Sci. 275(2), 198–202 (1996)

    Article  Google Scholar 

  • M. Roest, A. Reininger, J.J. Zwaginga, M.R. King, J.W.M. Heemskerk, Flow chamber-based assays to measure thrombus formation in vitro: requirements for standardization. J. Thromb. Haemost. 9(11), 2322–2324 (2011). doi:10.1111/j.1538-7836.2011.04492.x

    Article  Google Scholar 

  • S.O. Sage, T.J. Rink, Kinetic differences between thrombin-induced and ADP-induced calcium influx and release from internal stores in fura-2-loaded human platelets. Biochem. Biophys. Res. Commun. 136(3), 1124–1129 (1986). doi:10.1016/0006-291X(86)90450-X

    Article  Google Scholar 

  • S.O. Sage, N. Pugh, M.J. Mason, A.G.S. Harper, Monitoring the intracellular store Ca2+ concentration in agonist-stimulated, intact human platelets by using Fluo-5N. J. Thromb. Haemost: JTH 9(3), 540–551 (2011). doi:10.1111/j.1538-7836.2010.04159.x

    Article  Google Scholar 

  • W. Siess, Molecular mechanisms of platelet activation. Physiol. Rev. 69(1), 58–178 (1989)

    Google Scholar 

  • D.-S. Sun, S.J. Lo, C.-H. Lin, M.-S. Yu, C.-Y. Huang, Y.-F. Chen, H.-H. Chang, Calcium oscillation and phosphatidylinositol 3-kinase positively regulate integrin alpha(IIb)beta3-mediated outside-in signaling. J. Biomed. Sci. 12(2), 321–333 (2005). doi:10.1007/s11373-005-0979-6

    Article  Google Scholar 

  • W.R. Surin, M.K. Barthwal, M. Dikshit, Platelet collagen receptors, signaling and antagonism: emerging approaches for the prevention of intravascular thrombosis. Thromb. Res. 122(6), 786–803 (2008). doi:10.1016/j.thromres.2007.10.005

    Article  Google Scholar 

  • H.M. Van Zijp, C.C.M.M. Schot, A.M. De Jong, N. Jongmans, T.C. Van Holten, M. Roest, M.W.J. Prins, Measurement of platelet responsiveness using antibody-coated magnetic beads for lab-on-a-chip applications. Platelets 23(8), 626–632 (2012). doi:10.3109/09537104.2011.651516

    Article  Google Scholar 

  • L.M. Waples, O.E. Olorundare, S.L. Goodman, Q.J. Lai, R.M. Albrecht, Platelet-polymer interactions: morphologic and intracellular free calcium studies of individual human platelets. J. Biomed. Mater. Res. 32(1), 65–76. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8864874 (1996)

  • S.J. Whicher, J.L. Brash, Platelet-foreign surface interactions: release of granule constituents from adherent platelets. J. Biomed. Mater. Res. 12(2), 181–201. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/77273 (1978)

    Google Scholar 

  • J.J. Zwaginga, K.S. Sakariassen, G. Nash, M.R. King, J.W. Heemskerk, M. Frojmovic, M.F. Hoylaerts, Flow-based assays for global assessment of hemostasis. Part 1: biorheologic considerations. J. Thromb. Haemost. 4(12), 2486–2487 (2006a). doi:10.1111/j.1538-7836.2006.02178.x

    Article  Google Scholar 

  • J.J. Zwaginga, K.S. Sakariassen, G. Nash, M.R. King, J.W. Heemskerk, M. Frojmovic, M.F. Hoylaerts, Flow-based assays for global assessment of hemostasis. Part 2: current methods and considerations for the future. J. Thromb. Haemost. 4(12), 2716–2717 (2006b). doi:10.1111/j.1538-7836.2006.02178.x

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed within the framework of CTMM, the Center for Translational Molecular Medicine (www.ctmm.nl), project CIRCULATING CELLS (grant 01C-102), and supported by the Dutch Heart Foundation.

Conflict of interest

M.W.J. Prins is an employee of Philips Research (Eindhoven, the Netherlands)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. J. Prins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 50 kb)

Fig. S1

The relation between two different methods to quantify the surface induced activation of platelets. On the horizontal axis the relative amount of secreted ATP from platelets immobilized at different types of surfaces is presented. The ATP concentration was quantified with the use of the luminescent luciferin/luciferase reaction. Each value is the average of three samples; the error bars represent the standard deviation. The percentage of immobilized platelets showing a calcium response upon chemical stimulation (chem. stim.) with TRAP is plotted on the vertical axis. This percentage was quantified by the measurement of the fluorescence intensity of the platelets that were loaded with a calcium indicator as described in section 2.3. Since both the ATP secretion and TRAP stimulation introduce irreversible activation in platelets, it is expected that there is an inverse relation between ATP release and response on a TRAP-stimulation. FcRbl = Fc-receptor blocker, aGPIb = anti-GPIb (JPEG 175 kb)

High Resolution image (EPS 447 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Zijp, H.M., Barendrecht, A.D., Riegman, J. et al. Quantification of platelet-surface interactions in real-time using intracellular calcium signaling. Biomed Microdevices 16, 217–227 (2014). https://doi.org/10.1007/s10544-013-9825-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9825-1

Keywords

Navigation