Skip to main content
Log in

Single-cell analysis of embryoid body heterogeneity using microfluidic trapping array

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The differentiation of pluripotent stem cells as embryoid bodies (EBs) remains a common method for inducing differentiation toward many lineages. However, differentiation via EBs typically yields a significant amount of heterogeneity in the cell population, as most cells differentiate simultaneously toward different lineages, while others remain undifferentiated. Moreover, physical parameters, such as the size of EBs, can modulate the heterogeneity of differentiated phenotypes due to the establishment of nutrient and oxygen gradients. One of the challenges in examining the cellular composition of EBs is the lack of analytical methods that are capable of determining the phenotype of all of the individual cells that comprise a single EB. Therefore, the objective of this work was to examine the ability of a microfluidic cell trapping array to analyze the heterogeneity of cells comprising EBs during the course of early differentiation. The heterogeneity of single cell phenotype on the basis of protein expression of the pluripotent transcription factor OCT-4 was examined for populations of EBs and single EBs of different sizes at distinct stages of differentiation. Results from the cell trap device were compared with flow cytometry and whole mount immunostaining. Additionally, single cells from dissociated pooled EBs or individual EBs were examined separately to discern potential differences in the value or variance of expression between the different methods of analysis. Overall, the analytical method described represents a novel approach for evaluating how heterogeneity is manifested in EB cultures and may be used in the future to assess the kinetics and patterns of differentiation in addition to the loss of pluripotency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • F. Antonica, D.F. Kasprzyk, R. Opitz, M. Iacovino, X.-H. Liao, A.M. Dumitrescu, S. Refetoff, K. Peremans, M. Manto, M. Kyba, S. Costagliola, Nature 491, 66 (2012)

    Article  Google Scholar 

  • C.L. Bauwens, R. Peerani, S. Niebruegge, K.A. Woodhouse, E. Kumacheva, M. Husain, P.W. Zandstra, Stem Cells 26, 2300 (2008)

    Article  Google Scholar 

  • A.M. Bratt-Leal, R.L. Carpenedo, T.C. McDevitt, Biotechnol. Prog. 25, 43 (2009)

    Article  Google Scholar 

  • C. Buhlmann, T. Preckel, S. Chan, G. Luedke, M. Valer, J. Biomol. Tech. 14, 119 (2003)

    Google Scholar 

  • D.G. Buschke, D.J. Hei, K.W. Eliceiri, B.M. Ogle, in Stem Cell-Based Tissue Repair, ed. by R. Gorodetsky (Royal Society of Chemistry, London, 2010), pp. 55–140

  • R.L. Carpenedo, C.Y. Sargent, T.C. McDevitt, Stem Cells 25, 2224 (2007)

    Article  Google Scholar 

  • C. Chazaud, Y. Yamanaka, T. Pawson, J. Rossant, Dev. Cell 10, 615 (2006)

    Article  Google Scholar 

  • Y.Y. Choi, B.G. Chung, D.H. Lee, A. Khademhosseini, J.-H. Kim, S.-H. Lee, Biomaterials 31, 4296 (2010)

    Article  Google Scholar 

  • K. Chung, C.A. Rivet, M.L. Kemp, H. Lu, Anal. Chem. 83, 7044 (2011)

    Article  Google Scholar 

  • K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A.S. Andalman, T.J. Davidson, J.J. Mirzabekov, K.A. Zalocusky, J. Mattis, A.K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V.Gradinaru, K. Deisseroth, Nature 497, 332 (2013)

  • S. Cui, Y. Liu, W. Wang, Y. Sun, Y. Fan, Biomicrofluidics 5, 32003 (2011)

    Article  Google Scholar 

  • T.C. Doetschman, H. Eistetter, M. Katz, W. Schmidt, R. Kemler, J. Embryol. Exp. Morphol. 87, 27 (1985)

    Google Scholar 

  • M. Eiraku, N. Takata, H. Ishibashi, M. Kawada, E. Sakakura, S. Okuda, K. Sekiguchi, T. Adachi, Y. Sasai, Nature 472, 51 (2011)

    Article  Google Scholar 

  • T. Enver, S. Soneji, C. Joshi, J. Brown, F. Iborra, T. Orntoft, T. Thykjaer, E. Maltby, K. Smith, R.A. Dawud, M. Jones, M. Matin, P. Gokhale, J. Draper, P.W. Andrews, Hum. Mol. Genet. 14, 3129 (2005)

    Article  Google Scholar 

  • T. Enver, M. Pera, C. Peterson, P.W. Andrews, Cell Stem Cell 4, 387 (2009)

    Article  Google Scholar 

  • M. Esner, J. Pachernik, A. Hampl, P. Dvorak, Int. J. Dev. Biol. 46, 817 (2002)

    Google Scholar 

  • S.L. Faley, M. Copland, D. Wlodkowic, W. Kolch, K.T. Seale, J.P. Wikswo, J.M. Cooper, Lab Chip 9, 2659 (2009)

    Article  Google Scholar 

  • W.-T. Fung, A. Beyzavi, P. Abgrall, N.-T. Nguyen, H.-Y. Li, Lab Chip 9, 2591 (2009)

    Article  Google Scholar 

  • J.P. Glotzbach, M. Januszyk, I.N. Vial, V.W. Wong, A. Gelbard, T. Kalisky, H. Thangarajah, M.T. Longaker, S.R. Quake, G. Chu, G.C. Gurtner, PloS One 6, e21211 (2011)

    Article  Google Scholar 

  • T. Graf, M. Stadtfeld, Cell Stem Cell 3, 480 (2008)

    Article  Google Scholar 

  • K. Hayashi, S.M.C.D.S. Lopes, F. Tang, M.A. Surani, Cell Stem Cell 3, 391 (2008)

    Article  Google Scholar 

  • S.-H. Hong, T. Werbowetski-Ogilvie, V. Ramos-Mejia, J.B. Lee, M. Bhatia, Stem Cell Res. 5, 120 (2010)

    Article  Google Scholar 

  • S.R. Hough, A.L. Laslett, S.B. Grimmond, G. Kolle, M.F. Pera, PLoS One 4, e7708 (2009)

    Article  Google Scholar 

  • Y.-S. Hwang, B.G. Chung, D. Ortmann, N. Hattori, H.-C. Moeller, A. Khademhosseini, Proc. Natl. Acad. Sci. 106, 16978 (2009)

    Article  Google Scholar 

  • J.P. Jung, J.M. Squirrell, G.E. Lyons, K.W. Eliceiri, B.M. Ogle, Trends Biotechnol. 30, 233 (2012)

    Article  Google Scholar 

  • S.J. Kattman, T.L. Huber, G.M. Keller, Dev. Cell 11, 723 (2006)

    Article  Google Scholar 

  • G. Keller, Genes Dev. 19, 1129 (2005)

    Article  Google Scholar 

  • M. Khoury, A. Bransky, N. Korin, L.C. Konak, G. Enikolopov, I. Tzchori, S. Levenberg, Biomed. Microdevices 12, 1001 (2010)

    Article  Google Scholar 

  • M.A. Kinney, R. Saeed, T.C. McDevitt, Integr. Biol. 4, 641 (2012)

    Article  Google Scholar 

  • S.A. Kobel, O. Burri, A. Griffa, M. Girotra, A. Seitz, M.P. Lutolf, Lab Chip 12, 2843 (2012)

    Article  Google Scholar 

  • I. Kumano, K. Hosoda, H. Suzuki, K. Hirata, T. Yomo, Lab Chip 12, 3451 (2012)

    Google Scholar 

  • H. Kurosawa, J. Biosci. Bioeng. 103, 389 (2007)

    Article  Google Scholar 

  • A. Lawrenz, F. Nason, J.J. Cooper-White, Biomicrofluidics 6, 2411201 (2012)

    Article  Google Scholar 

  • A. Leahy, J.-W. Xiong, F. Kuhnert, H. Stuhlmann, J. Exp. Zool. 284, 67 (1999)

    Article  Google Scholar 

  • V. Lecault, M. Vaninsberghe, S. Sekulovic, D.J.H.F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A.K. White, D.G. Kent, M.R. Copley, F. Taghipour, C.J. Eaves, R.K. Humphries, J.M. Piret, C.L. Hansen, Nat. Methods 8, 581 (2011)

    Article  Google Scholar 

  • P.B. Lillehoj, H. Tsutsui, B. Valamehr, H. Wu, C.-M. Ho, Lab Chip 10, 1678 (2010)

    Article  Google Scholar 

  • V.A. Maltsev, J. Rohwedel, J. Hescheler, A.M. Wobus, Mech. Dev. 44, 41 (1993)

    Article  Google Scholar 

  • J.M. Messana, N.S. Hwang, J. Coburn, J.H. Elisseeff, Z. Zhang, J. Tissue Eng. Regen. Med. 2, 499 (2008)

    Article  Google Scholar 

  • J.C. Mohr, J. Zhang, S.M. Azarin, A.G. Soerens, J.J. de Pablo, J.A. Thomson, G.E. Lyons, S.P. Palecek, T.J. Kamp, Biomaterials 31, 1885 (2010)

    Article  Google Scholar 

  • R. Nair, A.V Ngangan, M.L. Kemp, T.C. McDevitt, PLoS One 7, e42580 (2012)

  • E.S. Ng, R.P. Davis, L. Azzola, E.G. Stanley, A.G. Elefanty, Blood 106, 1601 (2005)

    Article  Google Scholar 

  • S. Niebruegge, C.L. Bauwens, R. Peerani, N. Thavandiran, S. Masse, E. Sevaptisidis, K. Nanthakumar, K. Woodhouse, M. Husain, E. Kumacheva, P.W. Zandstra, Biotechnol. Bioeng. 102, 493 (2009)

    Article  Google Scholar 

  • W. Risau, H. Sariola, H.G. Zerwes, J. Sasse, P. Ekblom, R. Kemler, T. Doetschman, Development (Cambridge, England) 102, 471 (1988)

    Google Scholar 

  • E. Sachlos, D.T. Auguste, Biomaterials 29, 4471 (2008)

    Article  Google Scholar 

  • A.A. Sajini, L.V. Greder, J.R. Dutton, J.M.W. Slack, Dev. Biol. 371, 170 (2012)

    Article  Google Scholar 

  • T. Schroeder, Nat. Methods 8, S30 (2011)

    Article  Google Scholar 

  • M. Schuldiner, R. Eiges, A. Eden, O. Yanuka, J. Itskovitz-Eldor, R.S. Goldstein, N. Benvenisty, Brain Res. 913, 201 (2001)

    Article  Google Scholar 

  • J. Silva, A. Smith, Cell 132, 532 (2008)

    Article  Google Scholar 

  • A. Singh, S. Suri, T. Lee, J.M. Chilton, M.T. Cooke, W. Chen, J. Fu, S.L. Stice, H. Lu, T.C. McDevitt, A.J. García, Nat. Methods 10, 438 (2013)

    Google Scholar 

  • H. Suga, T. Kadoshima, M. Minaguchi, M. Ohgushi, M. Soen, T. Nakano, N. Takata, T. Wataya, K. Muguruma, H. Miyoshi, S. Yonemura, Y. Oiso, Y. Sasai, Nature 480, 57 (2011)

    Article  Google Scholar 

  • Y. Toyooka, D. Shimosato, K. Murakami, K. Takahashi, H. Niwa, Development 135, 909 (2008)

    Article  Google Scholar 

  • M.D. Ungrin, C. Joshi, A. Nica, C. Bauwens, P.W. Zandstra, PloS One 3, e1565 (2008)

    Article  Google Scholar 

  • B. Valamehr, S.J. Jonas, J. Polleux, R. Qiao, S. Guo, E.H. Gschweng, B. Stiles, K. Kam, T.M. Luo, O.N. Witte, X. Liu, B. Dunn, H. Wu, Proc. Natl. Acad. Sci. 105, 14459 (2008)

    Article  Google Scholar 

  • A.P. Van Winkle, I.D. Gates, M.S. Kallos, Cells Tissues Organs 196, 34 (2012)

    Google Scholar 

  • A.K. White, M. VanInsberghe, O.I. Petriv, M. Hamidi, D. Sikorski, M. a Marra, J. Piret, S. Aparicio, and C. L. Hansen. Proc. Natl. Acad. Sci. 108, 13999 (2011)

    Article  Google Scholar 

  • D.E. White, M.A. Kinney, T.C. McDevitt, M.L. Kemp, PLoS Comput. Biol. 9, e1002952 (2013)

  • H.Wichterle, I. Lieberam, A. Jeffery, T.M. Jessell, Cell 110, 385 (2002)

    Google Scholar 

  • H.-W. Wu, R.-C. Hsu, C.-C. Lin, S.-M. Hwang, G.-B. Lee, Biomicrofluidics 4, 024112 (2010)

  • M. Wu, T.D. Perroud, N. Srivastava, C.S. Branda, K.L. Sale, B.D. Carson, K.D. Patel, S.S. Branda, A.K. Singh, Lab Chip 12, 2823 (2012)

    Google Scholar 

  • C. Xu, S. Police, N. Rao, M.K. Carpenter, Circ. Res. 91, 501 (2002)

    Article  Google Scholar 

  • J.F. Zhong, Y. Chen, J.S. Marcus, A. Scherer, S.R. Quake, C.R. Taylor, L.P. Weiner, Lab Chip 8, 68 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the NIH R01EB010061(T.C.M.) and NIH R21EB012803 (H.L.), ARRA sub-award under RC1CA144825 (H.L.), a Sloan Foundation Fellowship (H.L.), NSF CBET 0954578 (H.L.). J.L.W. is currently supported by a GAANN Fellowship (Department of Education P200A090099) and previously by an NSF IGERT (DGE 0965945).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd C. McDevitt.

Additional information

Jenna L. Wilson and Shalu Suri contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, J.L., Suri, S., Singh, A. et al. Single-cell analysis of embryoid body heterogeneity using microfluidic trapping array. Biomed Microdevices 16, 79–90 (2014). https://doi.org/10.1007/s10544-013-9807-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9807-3

Keywords

Navigation