Skip to main content
Log in

A novel density control device for the study of cancer cell autocrine effect

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel cell self-loading and patterning device for quantitatively study density effect on cell behaviors. Using this device, it is easy to gather different cell density colonies in different sizes of micro-chambers using one homogeneous cell solution. As a demonstration, we show that the cell number of self-patterning MCF-7 colony is in proportion to the size of liquid-absorbing cavity in the device, from single cell to tens of cells. This device can easily be used to compare the cancer cells’ proliferation in different micro-environments, such as the same number of cells in micro-cavities with different sizes, or different numbers of cells in micro-cavities with the same size, or with different FBS concentrations. Our studies imply a plausible positive correlation between the local concentration of autocrine factors and tumor cell proliferation, which is also quantitative analyzed by a simple model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • J.W. Allen, S.N. Bhatia, Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol. Bioeng. 82, 253–262 (2003)

    Article  Google Scholar 

  • A.J. Almarza, K. A. Athanasiou, Effects of initial cell seeding density for the tissue engineering of the temporomandibular joint disc. Ann. Biomed. Eng. 33, 943–950 (2005)

    Article  Google Scholar 

  • J. El-ali, P.K. Sorger, K.F. Jensen, Cells on chips. Nature 442, 403–411 (2006)

    Article  Google Scholar 

  • K. Gupta, D.H. Kim, D. Ellison, C. Smith, A. Kundu, J. Tuan, K.Y. Suh, A. Levchenko, Lab-on-a-chip devices as an emerging platform for stem cell biology. Lab. Chip 10, 2019–2031 (2010)

    Article  Google Scholar 

  • P. Hamerlik, J.D. Lathia, R. Rasmussen, Q. Wu, J. Bartkova, M. Lee, P. Moudry, J. Bartek Jr., W. Fischer, J. Lukas, J.N. Rich, J. Bartek, Autocrine VEGF – VEGFR2 – Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J. Exp. Med. 209, 507–520 (2012)

    Article  Google Scholar 

  • K. Herholz, U. Pietrzyk, J. Voges, R. Schröder, M. Halber, H. Treuer, V. Sturm, W.D. Heiss, Correlation of glucose consumption and tumor cell density in astrocytomas. J. Neurosurg. 79, 853–858 (1993)

    Article  Google Scholar 

  • R.W. Holly, Control of growth of mammalian cells in cell culture. Nature 258, 487–490 (1975)

    Article  Google Scholar 

  • T.H. Hsu, J.L. Xiao, Y.W. Tsao, Y.L. Kao, S.H. Huang, W.Y. Liao, C.H. Lee, Analysis of the paracrine loop between cancer cells and fibroblasts using a microfluidic chip. Lab. Chip 11, 1808–1814 (2011)

    Article  Google Scholar 

  • T.H. Hsu, Y.L. Kao, W.L. Lin, J.L. Xiao, P.L. Kuo, C.W. Wu, W.Y. Liao, C.H. Lee, The migration speed of cancer cells influenced by macrophages and myofibroblasts co-cultured in a microfluidic chip. Integr. Biol. 4, 177–182 (2012)

    Article  Google Scholar 

  • P.J. Hung, P.J. Lee, P. Sabounchi, R. Lin, L.P. Lee, Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89, 1–8 (2004)

    Article  Google Scholar 

  • K. Kim, D. Dean, A.G. Mikos, J.P. Fisher, Effect of initial cell seeding density on early osteogenic signal expression of rat bone marrow stromal cells cultured on cross-linked poly(propylene fumarate) disks. Biomacromolecules 10, 1810–1817 (2009)

    Article  Google Scholar 

  • S.D. Kim, H.J. Kim, N.L. Jeon, Biological applications of microfluidic gradient devices. Integr. Biol. 2, 584–603 (2010)

    Article  Google Scholar 

  • C. Luo, X. Zhu, T. Yu, X. Luo, A fast cell loading and high-throughput microfluidic system for long-term cell culture in zero-flow environments. Biotechnol. Bioeng. 101, 190–195 (2008)

    Article  Google Scholar 

  • A. Maria, F. Macian, Autophagy, nutrition and immunology. Mol. Aspects Med. 33, 2–13 (2012)

    Article  Google Scholar 

  • S.M. Ong, C. Zhang, Y.C. Toh, S. Hyun, H. Loong, C. Tan, D. Noort, S. Park, H. Yu, A gel-free 3D microfluidic cell culture system. Biomaterials 29, 3237–3244 (2008)

    Article  Google Scholar 

  • A. Pluen, Y. Boucher, S. Ramanujan, T.D. Mckee, T. Gohongi, E. Tomaso, E.B. Brown, Y. Izumi, R.B. Campbell, D.A. Berk, R.K. Jain, Role of tumor – host interactions in interstitial diffusion of macromolecules: cranial vs. Subcutaneous tumors. PNAS 98, 4628–4633 (2001)

    Article  Google Scholar 

  • W. Saadi, S.J. Wang, F. Lin, N.L. Jeon, A parallel-gradient microfluidic chamber for quantitative analysis. Biomed. Microdev. 8, 109–118 (2006)

    Article  Google Scholar 

  • G.W. Si, W. Yang, S.Y. Bi, C.X. Luo, Q. Ouyang, A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis. Lab. Chip 12, 1389–1394 (2012)

    Article  Google Scholar 

  • M.B. Sporn, G.J. Todaro, Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 303, 878–880 (1980)

    Article  Google Scholar 

  • P. Vaupel, F. Kallinowski, P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989)

    Google Scholar 

  • G. Vunjak-novakovic, D.T. Scadden, Perspective biomimetic platforms for human stem cell research. Stem Cell 8, 252–261 (2011)

    Google Scholar 

  • L. Wang, X.F. Ni, C.X. Luo, Z.L. Zhang, D.W. Pang, Y. Chen, Self-loading and cell culture in one layer microfluidic devices. Biomed. Microdev. 11, 679–684 (2009a)

    Article  Google Scholar 

  • L. Wang, I. Tran, K. Seshareddy, M.L. Weiss, M.S. Detamore, A comparison of human bone marrow–derived mesenchymal stem cells and human umbilical cord–derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng. Part A 15, 2259–2266 (2009b)

    Article  Google Scholar 

  • E.W.K. Young, D.J. Beebe, Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 39, 1036–1048 (2010)

    Article  Google Scholar 

  • H. Yu, I. Meyvantsson, A. Shkel, D.J. Beebe, Diffusion dependent cell behavior in microenvironments. Lab. Chip 5, 1089–1095 (2005)

    Article  Google Scholar 

  • A. Zetterberg, G. Auer, Proliferative activity and cytochemical properties of nuclear chromatin related to local cell density of epithelial cells. Exp. Cell Res. 62, 262–270 (1970)

    Article  Google Scholar 

  • K. Zhang, P. Wong, L. Zhang, B. Jacobs, E.C. Borden, J.C. Aster, B. Bedogni, A Notch1–neuregulin1 autocrine signaling loop contributes to melanoma growth. Oncogene 31, 4609–4618 (2012)

    Article  Google Scholar 

  • H. Zhou, M.D. Weir, H.H.K. Xu, Effect of cell seeding density on proliferation and osteodifferentiation of umbilical cord stem cells on calcium phosphate cement-fiber scaffold. Tissue Eng. 17, 2603–2613 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank X.J Kang for helpful discussions. This work is partially supported by the NSF of China (10721403, 11074009, 10721463, 11174012), the MOST of China (2009CB918500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunxiong Luo or Qi Ouyang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Li, Z., Zhang, W. et al. A novel density control device for the study of cancer cell autocrine effect. Biomed Microdevices 15, 683–689 (2013). https://doi.org/10.1007/s10544-013-9783-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9783-7

Keywords

Navigation