Skip to main content
Log in

Selective bacterial patterning using the submerged properties of microbeads on agarose gel

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We proposed a new bacteria patterning method on the restricted region of microbeads, using the submerged property of polystyrene microbeads on various concentrations of agarose gel. Moreover, we fabricated a bacterial microrobot using attenuated Salmonella typhimurium through the new patterning methods. We controlled the submerged degree of polystyrene microbeads through the regulation of the hardness of the agarose gel. The polystyrene microbeads on agarose gel were transferred onto a poly-dimethylsiloxane (PDMS) surface for easy manipulation of the microbeads. Then, we treated the polystyrene microbeads on the PDMS surface with antibacterial adherent factors, such as O2 plasma and bovine serum albumin (BSA). The Salmonella typhimurium was attached to the entire surface of the untreated polystyrene microbeads, whereas Salmonella typhimurium were only attached to the restricted surface region of the treated polystyrene microbeads through the proposed patterning method. The bacteria-attached microbeads gain motility by the propulsion of the attached bacteria, and the selective-bacteria-attached microbeads showed enhanced motility. Compared with whole-bacteria-attached polystyrene microbeads (1.74 ± 1.62 μm/s), the selective bacteria-attached polystyrene microbeads, using O2 plasma and BSA, showed 9.18 ± 1.88 μm/s and 14.65 ± 8.66 μm/s faster moving velocities, respectively. Through the results, we expected that the proposed patterning methodology of microbeads could contribute to the development of biomedical bacterial microrobots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • J.J. Abbott, Z. Nagy, F. Beyeler, B.J. Nelson, IEEE Robot. Autom. Mag. 14, 92 (2007)

    Article  Google Scholar 

  • B. Behkam, M. Sitti, Proc. IEEE Eng. Med. Biol. Soc. 1, 2421 (2006)

    Google Scholar 

  • B. Behkam, M. Sitti, Appl. Phys. Lett. 93, 223901 (2008)

    Article  Google Scholar 

  • H.C. Berg, Annu. Rev. Biochem. 72, 19 (2003)

    Article  Google Scholar 

  • S. Bouadiat, C. Berendsen, P. Thomsen, S.G. Petersen, A. Wolff, J. Jonsmann, Lab Chip 4, 632 (2004)

    Article  Google Scholar 

  • J.D. Bronzino, The Biomedical Engineering Handbook, 3rd edn. (Taylor & Francis, 2006)

  • A. Cavalcanti, R.A. Freitas Jr., IEEE Trans. Nanobiosci. 4, 133 (2005)

    Article  Google Scholar 

  • A. Cerf, C. Vieu, INTECH Chapter 22, 447 (2010)

    Google Scholar 

  • H. Choi, J. Choi, G. Jang, J. Park, S. Park, Smart Mater. Struct. 18, 055007 (2009)

    Article  Google Scholar 

  • N. Darnton, L. Turner, K. Breuer, H.C. Berg, Biophys. J. 86, 1863 (2004)

    Article  Google Scholar 

  • M. Eisenbach, Encyclopedia of Life Sciences 1 (2001)

  • S. Floyd, C. Pawashe, M. Sitti, IEEE Trans. Robot. 25, 1332 (2009)

    Article  Google Scholar 

  • R.A. Freitas Jr., Biotechnology 26, 441 (1998)

    Google Scholar 

  • H.M. Haruff, J. Munakata-Marr, D.W.M. Marr, Biointerfaces 27, 189 (2003)

    Article  Google Scholar 

  • A. Hejazi, F.R. Falkiner, J. Med. Microbiol. 46, 903 (1997)

    Article  Google Scholar 

  • J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    Article  Google Scholar 

  • J.F. Jones, J.D. Feick, D. Imoudu, N. Chukwumah, M. Vigeant, D. Velegol, Appl. Environ. Microbiol. 69, 6515 (2003)

    Article  Google Scholar 

  • C.T. Lefèvre, A. Bernadac, K. Yu-Zhang, N. Pradel, L. Wu, Environ. Microbiol. 11, 1646 (2009)

    Article  Google Scholar 

  • W. Lin, J. Li, Y. Pan, Appl. Environ. Microbiol. 78, 668 (2012)

    Article  Google Scholar 

  • M.C.M. Loosdrecht, J. Lyklema, W. Norde, A.J.B. Zehnder, Microb. Ecol. 17, 1 (1989)

    Article  Google Scholar 

  • S. Martel, Proc. Int. Conf. Microtech. Med. Biol. 89 (2006)

  • S. Martel, M. Mohammadi, O. Felfoul, Z. Lu, P. Pouponneau, Int. J. Robot. Res. 28, 571 (2009)

    Article  Google Scholar 

  • J. Min, V.H. Nguyen, H. Kim, Y. Hong, H. Choy, Nat. Protoc. 3, 629 (2008)

    Article  Google Scholar 

  • S. Park, H. Bae, J. Kim, B. Lim, J. Park, S. Park, Lab Chip 10, 1706 (2010)

    Article  Google Scholar 

  • A.A.G. Requicha, IEEE Spec. Issue Nanoelectron. Nanoprocess. 91, 1922 (2003)

    Google Scholar 

  • B. Rowan, M.A. Wheeler, R.M. Crooks, Langmuir 18, 9914 (2002)

    Article  Google Scholar 

  • R.M. Ryan, J. Green, C.E. Lewis, Bioessays 28, 84 (2006)

    Article  Google Scholar 

  • M.S. Sakar, E.B. Steager, D. Kim, A.A. Julius, M. Kim, V. Kumar, G.J. Pappas, Int. J. Robot. Res. 30, 647 (2008)

    Article  Google Scholar 

  • N.N. Sharma, R.K. Mittal, Int. J. Smart Sens. Intell. Syst. 1, 87 (2008)

    MATH  Google Scholar 

  • M. Siegel, IEEE Instrum. Meas. Technol. Conf. 303 (2001)

  • M. Sitti, Proceedings of the 2004 American Control Conference 1 (2004)

  • E. Steager, C.B. Kim, J. Patel, S. Bith, C. Naik, L. Reber, M.J. Kim, Appl. Phys. Lett. 90, 263901 (2007)

    Article  Google Scholar 

  • E.B. Steager, M.S. Sakar, D.H. Kim, V. Kumar, G.J. Pappas, M.J. Kim, J. Micromech. Microeng. 21, 035001 (2011)

    Article  Google Scholar 

  • A. Zita, M. Hermansson, Appl. Environ. Microbiol. 60, 3041 (1994)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Future Pioneer R&D program through the National Research Foundation of Korea, funded by the Ministry of Education, Science, and Technology (2010-0002240).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong-Oh Park or Sukho Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S 1

Confocal microscopic Z stack images of S. typhimurium attachment on untreated PS microbead surfaces. (Scale bars = 20 μm). (JPEG 1992 kb)

S 2

Confocal microscopic time lapse images of S. typhimurium attachment on untreated PS microbead surfaces. (Scale bars = 20 μm). (JPEG 2013 kb)

S 3

Mean squared displacements of Untreated microbead, BSA-coated microbead and O2 plasma-exposed PS microbead. Stochastic function was fitted to this data set (JPEG 115 kb)

High resolution image (TIFF 123811 kb)

(AVI 1163 kb)

(AVI 1037 kb)

(AVI 773 kb)

(AVI 481 kb)

(AVI 433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.J., Bae, H., Ko, S.Y. et al. Selective bacterial patterning using the submerged properties of microbeads on agarose gel. Biomed Microdevices 15, 793–799 (2013). https://doi.org/10.1007/s10544-013-9765-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9765-9

Keywords

Navigation