Skip to main content
Log in

High-density immobilization of antibodies onto nanobead-coated cyclic olefin copolymer plastic surfaces for application as a sensitive immunoassay chip

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Our research efforts have been devoted to development of nanobead multilayer-based sensitive immunoassays on cyclic olefin copolymer (COC) plastic surfaces. To facilitate nanobead attachment and impart antibiofouling properties to a COC substrate, we used an amphiphilic copolymer comprising benzyl, polyethylene glycol, and reactive ester moieties to coat the hydrophobic COC surface in an aqueous environment. Subsequently, NH2-modified polystyrene nanobeads were reacted with the polymer-coated COC surface and further assembled into multilayers that increased the overall surface area available for attaching capture antibodies. After treatment of the nanobead multilayers with an amine-reactive homobifunctional crosslinker, a model capture antibody (anti-rabbit IgG) was covalently immobilized onto the activated surface of nanobeads. Finally, a sandwich immunoassay was carried out using rabbit IgG as a target analyte and rhodamine-labeled anti-rabbit IgG as a probe. Compared with a nanobead-free, polymer-coated COC surface, the nanobead multilayer-based immunoassay exhibited ~4-fold higher fluorescence intensity. In addition, our nanobead-based assay system exhibited a wide dynamic range of detection (0.1 to 1,000 ng/mL) and high specificity for rabbit IgG. Furthermore, much better detection sensitivity for rabbit IgG was attained in the nanobead multilayer-based immunoassay than with a conventional ELISA system (0.1 ng/mL versus 10 ng/mL), indicating the potential value of the proposed immunoassay system in plastic-based portable biochip applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • P.K. Ajikumar, J. Kiat, Y.C. Tang, J.Y. Lee, G. Stephanopoulos, H.P. Too, Langmuir 23, 5670–5677 (2007)

    Article  Google Scholar 

  • P. Arenkov, A. Kukhtin, A. Gemmell, S. Voloshchuk, V. Chupeeva, A. Mirzabekov, Anal. Biochem. 278, 123–131 (2000)

    Article  Google Scholar 

  • E. Avaniss-Aghajani, S. Berzon, A. Sarkissian, Clin. Vaccine Immunol. 14, 505–509 (2007)

    Article  Google Scholar 

  • R. Benters, C.M. Niemeyer, D. Wohrle, Biochem. 2, 686–694 (2001)

    Google Scholar 

  • A. Bhattacharyya, C.M. Klapperich, Biomed. Microdevices 9, 245–251 (2007)

    Article  Google Scholar 

  • R.E. Biagini, C.G. Parks, J.P. Smith, D.L. Sammons, S.A. Robertson, Anal. Bioanal. Chem. 388, 613–618 (2007)

    Article  Google Scholar 

  • J.A. Camarero, Biopolymers 90, 450–458 (2008)

    Article  Google Scholar 

  • C.D. Chin, V. Linder, S.K. Sia, Lab Chip 7, 41–57 (2007)

    Article  Google Scholar 

  • M. Grumann, J. Steigert, L. Riegger, I. Moser, B. Enderle, K. Riebeseel, G. Urban, R. Zengerle, J. Ducrée, Biomed. Microdevices 8, 209–214 (2006)

    Article  Google Scholar 

  • S. Haeberle, R. Zengerle, Lab Chip 7, 1094–1110 (2007)

    Article  Google Scholar 

  • L.R. Hirsch, J.B. Jackson, A. Lee, N.J. Halas, J.L. West, Anal. Chem. 75, 2377–2381 (2003)

    Article  Google Scholar 

  • P. Jonkheijm, D. Weinrich, H. Schroder, C.M. Niemeyer, H. Waldmann, Angew. Chem. Int. Ed. 47, 9618–9647 (2008)

    Article  Google Scholar 

  • H. Kitano, Science 295, 1662–1664 (2002)

    Article  Google Scholar 

  • Y. Liu, C.M. Li, Anal. Lett. 45, 130–155 (2012)

    Article  Google Scholar 

  • T.B. Martins, C.M. Litwin, H.R. Hill, Am. J. Clin. Pathol. 129, 34–41 (2008)

    Article  Google Scholar 

  • T. Mori, G. Yamanouchi, X. Han, Y. Inoue, S. Shigaki, T. Yamaji, T. Sonoda, K. Yasui, H. Hayashi, T. Niidome, Y. Katayama, J. Appl. Phys. 105, 102020 (2009)

    Article  Google Scholar 

  • P.S. Nunes, P.D. Ohlsson, O. Ordeig, J.P. Kutter, Microfluid Nanofluid 9, 145–161 (2010)

    Article  Google Scholar 

  • E. Phizicky, P.I.H. Bastiaens, H. Zhu, M. Snyder, S. Fields, Nature 422, 208–215 (2003)

    Article  Google Scholar 

  • S. Roy, Z. Gao, Nano Today 4, 318–334 (2009)

    Article  Google Scholar 

  • F. Rusmini, Z.Y. Zhong, J. Feijen, Biomacromolecules 8, 1775–1789 (2007)

    Article  Google Scholar 

  • J. Satija, V.V.R. Sai, S. Mukherji, J. Mater. Chem. 21, 14367–14386 (2011)

    Article  Google Scholar 

  • J.S. Shim, A.W. Browne, C.H. Ahn, Biomed. Microdevices 12, 949–957 (2010)

    Article  Google Scholar 

  • O. Shovman, B. Gilburd, G. Zandman-Goddard, A. Yehiely, P. Langevitz, Y. Shoenfeld, Autoimmunity 38, 105–109 (2005)

    Article  Google Scholar 

  • J.R. Siqueira Jr., L. Caseli, F.N. Crespilho, V. Zucolotto, O.N. Oliveira Jr., Biosens. Bioelectron. 25, 1254–1263 (2010)

    Article  Google Scholar 

  • P.R. Srinivas, B.S. Kramer, S. Srivastava, Lancet Oncol. 2, 698–704 (2001)

    Article  Google Scholar 

  • D. Sung, D.H. Shin, S. Jon, Biosens. Bioelectron. 26, 3967–3972 (2011)

    Article  Google Scholar 

  • D. Sung, S. Park, S. Jon, Langmuir 28, 4507–4514 (2012)

    Article  Google Scholar 

  • M.F. Templin, D. Stoll, M. Schrenk, P.C. Traub, C.F. Vöhringer, T.O. Joos, Trends Biotechnol. 20, 160–166 (2002)

    Article  Google Scholar 

  • W.Y. Yuan, H. Dong, C.M. Li, X.Q. Cui, L. Yu, Z.S. Lu, Q. Zhou, Langmuir 23, 13046–13052 (2007)

    Article  Google Scholar 

  • W. Yuan, Z. Lu, C.M. Li, J. Mater. Chem. 21, 5148–5155 (2011)

    Article  Google Scholar 

  • X. Zhou, J. Zhou, Proteomics 6, 1415–1426 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the National R&D Program for Cancer Control, Ministry for Health, Welfare, and Family Affairs, Republic of Korea and by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (grant number: R31-10071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangyong Jon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 650 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, D., Yang, S., Park, J.W. et al. High-density immobilization of antibodies onto nanobead-coated cyclic olefin copolymer plastic surfaces for application as a sensitive immunoassay chip. Biomed Microdevices 15, 691–698 (2013). https://doi.org/10.1007/s10544-012-9732-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9732-x

Keywords

Navigation