Skip to main content
Log in

Rapidly-moving insect muscle-powered microrobot and its chemical acceleration

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Insect dorsal vessel (DV) tissue seems well suited for microactuators due to its environmental robustness and low maintenance. We describe an insect muscle-powered autonomous microrobot (iPAM) and its acceleration with a neuroactive chemical, crustacean cardioactive peptide (CCAP). The iPAM, consisting of a DV tissue and a frame, was designed on the basis of a finite element method simulation and fabricated. The iPAM moved autonomously by spontaneous contraction of the DV tissue at a significantly improved velocity compared to our previous model. The best-case iPAM moved faster than other reported microrobots powered by mammalian cardiomycytes. It moved forward with a small declination of 0.54 ° during one contraction since the DV tissue not only shortened but also twisted. The iPAM frame should be designed by taking into account the innate contractile characteristic of DV tissue. The acceleration effect of CCAP on contracting frequency was evaluated using a micropillar array and was a maximum at 10-6 M. The effect peaked 1 min after addition and remained for 2 min. CCAP addition at 10-6 M accelerated the iPAM temporally and the velocity increased 8.1-fold. We view the DV tissue as one of the most promising materials for chemically regulatable microactuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Y. Akiyama, K. Iwabuchi, Y. Furukawa, K. Morishima, J. Biotech. 133, 261 (2008a)

    Article  Google Scholar 

  • Y. Akiyama, K. Iwabuchi, Y. Furukawa, K. Morishima, Fabrication and evaluation of temperature-tolerant bioactuator driven by insect heart cells. in Int. Conf. Proc. Miniaturized Systems in Chemistry and Life Science (2008b) pp. 1669–1671

  • Y. Akiyama, K. Iwabuchi, Y. Furukawa, K. Morishima, Lab Chip 9, 140 (2009)

    Article  Google Scholar 

  • Y. Akiyama, K. Iwabuchi, Y. Furukawa, K. Morishima, In Vitro Cell. Dev. Biol.-Animal 46, 411 (2010)

    Article  Google Scholar 

  • Y. Akiyama, T. Hoshino, K. Iwabuchi, K. Morishima, PLoS ONE 7(7), e38274 (2012). doi:10.1371/journal.pone.0038274

    Article  Google Scholar 

  • R. Bodmer, R.J. Wessells, E.C. Johnson, H. Dowse, in Comprehensive molecular insect science, ed. by L.I. Gilbert, K. Iatrou, S.S. Gill, vol. 2 (Elsevier, Oxford, 2005), p. 199

    Chapter  Google Scholar 

  • T. Bruegmann, D. Malan, M. Hesse, T. Beiert, C.J. Fuegemann, B.K. Fleischmann, P. Sasse, Nat. Meth. 7, 897 (2010)

    Article  Google Scholar 

  • K. Choi, J. Rogers, J. Am. Chem. Soc. 125, 4060 (2003)

    Article  Google Scholar 

  • K. Deisseroth, G. Feng, A.K. Majewska, G. Miesenböck, A. Ting, M.J. Schnitzer, J. Neurosci. 26, 10380 (2006)

    Article  Google Scholar 

  • A. Ejaz, A.B. Lange, Peptides 29, 214 (2008)

    Article  Google Scholar 

  • A. Eppler, G. Adam, E. Sander, in Invertebrate systems in vitro, ed. by E. Kurstak, K. Maramorosch, A. Dubendorfer (Elsevier Biomedical, New York, 1980), p. 59

    Google Scholar 

  • A.W. Feinberg, A. Feigel, S.S. Shevkoplyas, S. Sheehy, G.M. Whitesides, K.K. Parker, Science 317, 1366 (2007)

    Article  Google Scholar 

  • G. Gäde, K.H. Hoffmann, J.H. Spring, Physiol. Rev. 77, 963 (1997)

    Google Scholar 

  • K. Kawasaki, M. Ikeuchi, T. Hidaka, Jpn J. Appl. Ent. Zool. 31, 78 (1987)

    Article  Google Scholar 

  • J. Kim, J. Park, S. Yang, J. Baek, B. Kim, S.H. Lee, E.S. Yoon, K. Chun, S. Park, Lab Chip 7, 1504 (2007)

    Article  Google Scholar 

  • B.J. Krijgsman, N.E. Krijgsman-Berger, Bull. Ent. Res. 42, 143 (1951)

    Article  Google Scholar 

  • T.J. Kurtti, M.A. Brooks, in Insect and mite nutrition, ed. by J.G. Rodriguez (North-Holland Pub. Co, Amsterdam, 1972), p. 387

    Google Scholar 

  • T.J. Kurtti, S.P. Chaudhary, M.A. Brooks, In Vitro 11, 274 (1975)

    Article  Google Scholar 

  • H. Lehman, C. Murgiuc, T. Miller, T. Lee, J. Hildebrand, Peptides 14, 735 (1993)

    Article  Google Scholar 

  • K. Morishima, Y. Tanaka, M. Ebara, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Sens. Act. B 119, 345 (2006)

    Article  Google Scholar 

  • J. Park, I.C. Kim, J. Baek, M. Cha, J. Kim, S. Park, J. Lee, B. Kim, Lab Chip 7, 1367 (2007)

    Article  Google Scholar 

  • K. Shimizu, T. Hoshino, Y. Akiyama, K. Iwabuchi, Y. Akiyama, M. Yamato, T. Okano, K. Morishima, Multi-scale reconstruction and performance of insect muscle powered bioactuator from tissue to cell sheet. in Proc. of IEEE RAS & EMBS Biomedical Robotics and Biomechatronics (IEEE, 2010), pp. 425–430

  • J. Stangier, C. Hilbich, H. Dircksen, R. Keller, Peptides 9, 795 (1988)

    Article  Google Scholar 

  • Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Lab Chip 6, 230 (2006a)

    Article  Google Scholar 

  • Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Lab Chip 6, 362 (2006b)

    Article  Google Scholar 

  • Y. Tanaka, K. Sato, T. Shimizu, M. Yamato, T. Okano, T. Kitamori, Biosens. Bioelectro. 23, 449 (2007)

    Article  Google Scholar 

  • J. Xi, J.J. Schmidt, C.D. Montemagno, Nat. Mater. 4, 180 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan Nos. 21676002, 21111503, 22860020 and 23111705, the MEXT project, “Creating Hybrid Organs of the future” at Osaka University, and the Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization (NEDO) of Japan and CASIO Science Promotion Foundation. We are also truly grateful to Ms. Shimakura for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Morishima.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Esm 1

(JPEG 29 kb)

High Resolution

(TIFF 267 kb)

(MPG 2888 kb)

(MPG 4762 kb)

Esm 4

(MPG 1430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akiyama, Y., Odaira, K., Sakiyama, K. et al. Rapidly-moving insect muscle-powered microrobot and its chemical acceleration. Biomed Microdevices 14, 979–986 (2012). https://doi.org/10.1007/s10544-012-9700-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9700-5

Keywords

Navigation