Skip to main content
Log in

Delivery of molecules into cells using localized single cell electroporation on ITO micro-electrode based transparent chip

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Single cell electroporation is one of the nonviral method which successfully allows transfection of exogenous macromolecules into individual living cell. We present localized cell membrane electroporation at single-cell level by using indium tin oxide (ITO) based transparent micro-electrodes chip with inverted microscope. A focused ion beam (FIB) technique has been successfully deployed to fabricate transparent ITO micro-electrodes with submicron gaps, which can generate more intense electric field to produce very localized cell membrane electroporation. In our approach, we have successfully achieved 0.93 μm or smaller electroporation region on the cell surface to inject PI (Propidium Iodide) dye into the cell with 60 % cell viability. This experiments successfully demonstrate the cell self-recover process from the injected PI dye intensity variation. Our localized cell membrane electroporation technique (LSCMEP) not only generates reversible electroporation process but also it provides a clear optical path for potentially monitoring/tracking of drugs to deliver in single cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • A. Agarwal, I. Zudans, E.A. Weber, J. Olofsson, O. Orwar, G.S. Weber, Anal. Che. 79, 3589 (2007)

    Article  Google Scholar 

  • K. Asami, Y. Takahashi, S. Takashima, Biophys. J. 58(1), 143 (1990)

    Article  Google Scholar 

  • P.E. Boukany, A. Morss, W.-C. Liao, B. Henslee, H.C. Jung, X. Zhang, B. Yu, X. Wang, Y. Wu, L. Li, K. Gao, X. Hu, X. Zhao, O. Hemminger, W. Lu, G.P. Lafyatis, L.J. Lee, Nat. Nanotechnology 6, 747 (2011)

    Article  Google Scholar 

  • J.E. Bestman, R.C. Ewald, S. Chiu, H.T. Cline, Nat. Protocols 1, 1268 (2006)

    Article  Google Scholar 

  • D.C. Chang, T.S. Reese, Biophys. J. 58, 01 (1990)

    Article  Google Scholar 

  • D.C. Chang, Biophys. J56, 641 (1989)

    Article  Google Scholar 

  • C. Chen, J.A. Evans, M.P. Robinson, S.W. Smye, P.O. Toole, Phys. Med. Biol. 53, 4747 (2008)

    Article  Google Scholar 

  • R. Crystal, Science 270, 404 (1995)

    Article  Google Scholar 

  • A. Donsante, D.G. Miller, Y. Li, C. Vogler, E.M. Brunt, D.W. Russell, M.S. Sands, Science 317, 477 (2007)

    Article  Google Scholar 

  • K.K. Ewert, A. Ahmad, N.F. Bouxsein, H.M. Evans, C.R. Safinya, Methods Mol. Biol. 433, 159 (2008)

    Article  Google Scholar 

  • M.B. Fox, D.C. Esveld, A. Valero, R. Luttge, H.C. Mastwijk, P.V. Bartels, A. van den Berg, and R. M. Boom, Anal. Bioanal. Chem. 385, 474 (2006)

    Google Scholar 

  • D.H. Fuller, P. Loudon, C. Schmaljohn, Methods 40, 86 (2006)

    Google Scholar 

  • Z.C. Hartman, D.M. Appledorn, A. Amalfitano, Virus Res. 132, 1 (2008)

    Article  Google Scholar 

  • M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, L.P. Lee, Lab Chip 5, 38 (2005)

    Article  Google Scholar 

  • Y.-C. Lin, M.-Y. Huang, J. Micromach. & Micreng 11, 542 (2001)

    Article  MathSciNet  Google Scholar 

  • J.A. Lundqvist, F. Sahlin, M.A.I. Aberg, A. Stromberg, P.S. Eriksson, O. Orwar, Proc. Natl. Acad. Sci. U. S. A. 95, 1035 (1998)

    Article  Google Scholar 

  • E. Meumann, M. Schaefer-Ridder, Y. Wang, P.H. Hofschneider, J. EMBO. 1, 841 (1982)

    Google Scholar 

  • D. Nawarathna, K. Unal, H.K. Wickramasinghe, Appl. Phy. Lett 93, 153111 (2008)

    Article  Google Scholar 

  • S. Ohta, K. Suzuki, Y. Ogino, S. Miyagawa, A. Murashima, D. Matsumaru, Dev. Growth Differ. 50, 517 (2008)

    Article  Google Scholar 

  • U. Pliquett, J.C. Weaver, Bioelectrochem. Bioenerg. 39, 1 (1996)

    Article  Google Scholar 

  • F. Ryttsén, C. Farre, C. Brennan, S.G. Weber, K. Nolkratz, K. Jardemark, D.T. Chiu, O. Orwar, Biophys. J. 79, 1993 (2000)

    Article  Google Scholar 

  • J. Teissie, M.P. Rols, Biophys. J. 65, 409 (1993)

    Article  Google Scholar 

  • T. Tsong, Biophysics. J. 60, 297 (1991)

    Article  Google Scholar 

  • A. Valero, J.N. Post, J.W. van Nieuwkasteele, P.M. ter Braak, W. Kruijer, A. vanden Berg. Lab Chip 8, 62 (2008)

    Article  Google Scholar 

  • Y. Yang, F.A. Nunes, K. Berencsi, E.E. Furth, E. Gonczol, J.M. Wilson, Proc. Natl. Acad. Sci. USA 91, 4407 (1994)

    Article  Google Scholar 

  • J. Wang, M.J. Stine, C. Lu, Anal. Chem. 79, 9584 (2007)

    Article  Google Scholar 

  • U. Zimmermann, Biochim. Biophys. Acta 696, 227 (1982)

    Google Scholar 

Download references

Acknowledgement

The authors greatly appreciate the financial support from National Science Council (NSC) of Taiwan ROC through National Nanotechnology and Nanoscience Program under Contract no. NSC- 98-2120-M-007-003 and NSC 99-2120-M-007-009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-Gang Tseng.

Additional information

Sheng-Chiech Chen and Tuhin Subhra Santra are both first author, name has been arranged alphabetically.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, SC., Santra, T.S., Chang, CJ. et al. Delivery of molecules into cells using localized single cell electroporation on ITO micro-electrode based transparent chip. Biomed Microdevices 14, 811–817 (2012). https://doi.org/10.1007/s10544-012-9660-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9660-9

Keywords

Navigation