Skip to main content
Log in

Microfluidic extraction and stretching of chromosomal DNA from single cell nuclei for DNA fluorescence in situ hybridization

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We have developed a novel method for genetic characterization of single cells by integrating microfluidic stretching of chromosomal DNA and fiber fluorescence in situ hybridization (FISH). In this method, individually isolated cell nuclei were immobilized in a microchannel. Chromosomal DNA was released from the nuclei and stretched by a pressure-driven flow. We analyzed and optimized flow conditions to generate a millimeter-long band of stretched DNA from each nucleus. Telomere fiber FISH was successfully performed on the stretched chromosomal DNA. Individual telomere fiber FISH signals from single cells could be resolved and their lengths measured, demonstrating the ability of the method to quantify genetic features at the level of single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  • G.G. Badr, A.A. Waldman, Int. J. Neurosci. 6, 131 (1973)

    Article  Google Scholar 

  • J. Boussinesq, J. Math. Pures et Appl. 13, 377 (1868)

    Google Scholar 

  • S.L. Clark, P.T. Hammond, Langmuir 16, 10206 (2000)

    Article  Google Scholar 

  • G. Cosa, K.-S. Focsaneanu, J.R.N. McLean, J.P. McNamee, J.C. Scaiano, Photochem Photobiol. 73, 585 (2001)

    Article  Google Scholar 

  • E.T. Dimalanta, A. Lim, R. Runnheim, C. Lamers, C. Churas, D.K. Forrest, J.J. de Pablo, M.D. Graham, S.N. Coppersmith, S. Goldstein, D.C. Schwartz, Anal. Chem. 76, 5293 (2004)

    Article  Google Scholar 

  • S. Gonzalo, I. Jaco, M.F. Fraga, T. Chen, E. Li, M. Esteller, M.A. Blasco, Nat. Cell Biol. 8, 416 (2006)

    Article  Google Scholar 

  • M. Heiskanen, O. Kallioniemi, A. Palotie, Genet. Anal. 12, 179 (1996)

    Google Scholar 

  • M.-S. Hung, P.-C. Chen, J. Med. Biol. Eng. 30, 29 (2010)

    Google Scholar 

  • M.-S. Hung, O. Kurosawa, H. Kabata, M. Washizu, J. Chin. Soc. Mech. Eng. 30, 289 (2009)

    Google Scholar 

  • J.W. Ijdo, R.A. Wells, A. Baldini, S.T. Reeders, Nucleic Acids Res. 19, 4780 (1991)

    Article  Google Scholar 

  • D.A. Jackson, A. Pombo, J. Cell Biol. 140, 1285 (1998)

    Article  Google Scholar 

  • J. Jiang, B.S. Gill, Genome 49, 1057 (2006)

    Article  Google Scholar 

  • L. Klotz, B. Zimm, J. Mol. Biol. 72, 779 (1972)

    Article  Google Scholar 

  • B. Ladoux, P.S. Doyle, Europhys. Lett. 52, 511 (2000)

    Article  Google Scholar 

  • P.M. Lansdorp, N.P. Verwoerd, F.M. van de Rijke, V. Dragowska, M.T. Little, R.W. Dirks, A.K. Raap, H.J. Tanke, Hum. Mol. Genet. 5, 685 (1996)

    Article  Google Scholar 

  • R. Lebofsky, A. Bensimon, Brief. Funct. Genomic. Proteomic. 1, 385 (2003)

    Article  Google Scholar 

  • Z. Liu, Z. Li, H. Zhou, G. Wei, Y. Song, L. Wang, J. Microsc. 218, 233 (2005)

    Article  MathSciNet  Google Scholar 

  • J. McIlrath, S.D. Bouffler, E. Samper, A. Cuthbert, A. Wojcik, I. Szumiel, P.E. Bryant, A.C. Riches, A. Thompson, M.A. Blasco, R.F. Newbold, P. Slijepcevic, Cancer Res. 61, 912 (2001)

    Google Scholar 

  • L.M. Merlo, J.W. Pepper, B.J. Reid, C.C. Maley, Nat. Rev. Cancer 6, 924 (2006)

    Article  Google Scholar 

  • X. Michalet, R. Ekong, F. Fougerousse, S. Rousseaux, C. Schurra, N. Hornigold, M. van Slegtenhorst, J. Wolfe, S. Povey, J.S. Beckmann, A. Bensimon, Science 277, 1518 (1997)

    Article  Google Scholar 

  • D. Nicholas, N.D. Allen, D.M. Baird, Biochim. Biophys. Acta. 1792, 324 (2009)

    Google Scholar 

  • S. Shaposhnikov, E. Frengen, A.R. Collins, Mutagenesis 24, 383 (2009)

    Article  Google Scholar 

  • A. Sivak, S.R. Wolman, Histochemistry 42, 345 (1974)

    Article  Google Scholar 

  • M. Takemura, K. Sugimura, K. Okumura, S. Limsirichaikul, M. Suzuki, Y. Yamada, S. Yoshida, Biosci Biotechnol Biochem. 72, 630 (2008)

    Article  Google Scholar 

  • T. Tatsumi, T. Yoshimura, J. Fluid Mech. 212, 437 (1990)

    Article  MATH  Google Scholar 

  • R.H. Waterston et al., Nature 420, 520 (2002)

    Article  Google Scholar 

  • F.M. White, Viscous fluid flow (McGraw-Hill Book Company, New York, 1974), p. 123

    MATH  Google Scholar 

  • D.J. Wolff, S. Schwartz, Fluorescence in Situ Hybridization, The Principles of Clinical Cytogenetics, 2nd edn. (Humana Press, Totowa, NJ, 2004), pp. 455–489

    Google Scholar 

  • Y. Xia, G.M. Whitesides, Angew Chem. Int. Ed. 37, 550 (1998)

    Article  Google Scholar 

  • M. Zalzman, G. Falco, L.V. Sharova, A. Nishiyama, M. Thomas, S.L. Lee, C.A. Stagg, H.G. Hoang, H.T. Yang, F.E. Indig, R.P. Wersto, M.S. Ko, Nature 464, 858 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Kurt Koetz of the Department of Physics, FSU for assistance with use of the CNC mill system and Anne Thistle of the Department of Biological Science, FSU for editing the manuscript. This work was supported by the FSU Startup Funds, First Year Assistant Professor Award, and The Florida Department of Health James & Esther King Biomedical Research Program New Investigator Research Grant (1KN07) to JG and by National Institute for General Medical Sciences grant PO1 GM085354 to DMG. SiT was supported by the Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjiao Guan.

Appendix

Appendix

The shear stress distribution for Poiseuille flow in a rectangular channel can be expressed in terms of the deviation from that in an infinitely-wide channel (plane Poiseuille flow, Boussinesq 1868, White 1974). The wall shear stress in plane Poiseuille flow is expressed as

$$ \tau_{{wall}}^{\infty } = \frac{{6\mu v_{{av}}^{\infty }}}{h} = \frac{{6\mu {v_{{av}}}}}{{h(1 - \delta )}}, $$

where

$$ \delta = \frac{{192}}{{{\pi^5}A}}\mathop{\sum }\limits_{{n = 1,3,5, \ldots }}^{\infty } \frac{{\cosh \left( {n\pi A} \right) - 1}}{{{n^5}{ \sinh }(n\pi A)}}. $$

\( {\text{At }}\mu = {1} \times {1}{0^{{-{3}}}}{\text{Pa}} \cdot {\text{s}} \), h = 250 μm, and channel aspect ratio A = w/h = 4, δ and \( \tau_{{wall}}^{\infty } \) are calculated to be 0.158 and 6.33 dynes/cm2 respectively.

For a channel of width w and height h, the shear stresses normalized by \( \tau_{{wall}}^{\infty } \) in the channel are given by

$$ \begin{gathered} \tau = \left( {1 - 2z} \right) - \frac{8}{{{\pi^2}}}\mathop{\sum }\limits_{{n = 1,3,5, \ldots }}^{\infty } \frac{{\sinh \left( {n\pi y} \right) + { \sinh }(n\pi \left( {A - y} \right))}}{{{n^2}{ \sinh }(n\pi A)}}{ \cos }(n\pi z), \hfill \\ \quad \quad \quad \quad \quad \quad \quad 0 < y < A = \frac{w}{h}\quad \quad \quad 0 < z < 1 \hfill \\ \end{gathered} $$

where the coordinates along the width and height, y and z, respectively, have been normalized by the channel height h and channel aspect ratio A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Takebayashi, Si., Bernardin, E. et al. Microfluidic extraction and stretching of chromosomal DNA from single cell nuclei for DNA fluorescence in situ hybridization. Biomed Microdevices 14, 443–451 (2012). https://doi.org/10.1007/s10544-011-9621-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9621-8

Keywords

Navigation