Skip to main content
Log in

Surface acoustic wave induced particle manipulation in a PDMS channel—principle concepts for continuous flow applications

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A device for acoustic particle manipulation in the 40 MHz range for continuous-flow operation in a 50 μm wide PDMS channel has been evaluated. Unidirectional interdigital transducers on a Y-cut Z-propagation lithium nixobate wafer were used to excite a surface acoustic wave that generated an acoustic standing wave inside the microfluidic channel. It was shown that particle alignment nodes with different inter-node spacing could be obtained, depending on device design and driving frequency. The observed inter-node spacing differed from the standard half-wavelength inter-node spacing generally employed in bulk acoustic transducer excited resonant systems. This effect and the related issue of acoustic node positions relative the channel walls, which is fundamental for most continuous flow particle manipulation operations in channels, was evaluated in measurements and simulations. Specific applications of particle separation and alignment where these systems can offer benefits relative state-of the art designs were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • D. Bazou, G.A. Foster, J.R. Ralphs, W.T. Coakley, Mol. Membr. Biol. 22, 229–240 (2005)

    Article  Google Scholar 

  • D. Bazou, E.J. Blain, W.T. Coakley, Mol. Membr. Biol. 25, 102–U116 (2008)

    Article  Google Scholar 

  • M. Bok, H.Y. Li, L.Y. Yeo, J.R. Friend, Biotechnol. Bioeng. 103, 387–401 (2009)

    Article  Google Scholar 

  • M. Evander, L. Johansson, T. Lilliehorn, J. Piskur, M. Lindvall, S. Johansson, M. Almqvist, T. Laurell, J. Nilsson, Anal. Chem. 79, 2984–2991 (2007)

    Article  Google Scholar 

  • T. Franke, A.R. Abate, D.A. Weitz, A. Wixforth, Lab Chip 9, 2625–2627 (2009)

    Article  Google Scholar 

  • T. Franke, S. Braunmuller, L. Schmid, A. Wixforth, D.A. Weitz, Lab Chip 10, 789–794 (2010)

    Article  Google Scholar 

  • L.P. Gor'kov, Sovjet Physics 6, 773–775 (1962)

    Google Scholar 

  • C. Grenvall, P. Augustsson, H. Matsuoka, T. Laurell, μTAS 2008 Conference, Tokyo, 2008

  • A. Haake, J. Dual, J. Acoust. Soc. Am. 117, 2752–2760 (2005)

    Article  Google Scholar 

  • N.R. Harris, M. Hill, S. Beeby, Y. Shen, N.M. White, J.J. Hawkes, W.T. Coakley, Sensor Actuat B-Chem 95, 425–434 (2003)

    Article  Google Scholar 

  • J.J. Hawkes, W.T. Coakley, Sensor Actuat B-Chem 75, 213–222 (2001)

    Article  Google Scholar 

  • J.J. Hawkes, R.W. Barber, D.R. Emerson, W.T. Coakley, Lab Chip 4, 446–452 (2004)

    Article  Google Scholar 

  • M. Hill, J. Acoust. Soc. Am. 114, 2654–2661 (2003)

    Article  Google Scholar 

  • T.J. Huang, J.J. Shi, S. Yazdi, S.C.S. Lin, X.Y. Ding, I.K. Chiang, K. Sharp, Lab Chip 11, 2319–2324 (2011)

    Article  Google Scholar 

  • K. Huikko, P. Ostman, K. Grigoras, S. Tuomikoski, V.M. Tiainen, A. Soininen, K. Puolanne, A. Manz, S. Franssila, R. Kostiainen, T. Kotiaho, Lab Chip 3, 67–72 (2003)

    Article  Google Scholar 

  • J. Hultstrom, O. Manneberg, K. Dopf, H.M. Hertz, H. Brismar, M. Wiklund, Ultrasound Med. Biol. 33, 145–151 (2007)

    Article  Google Scholar 

  • L. Johansson, F. Nikolajeff, S. Johansson, S. Thorslund, Anal. Chem. 81, 5188–5196 (2009)

    Article  Google Scholar 

  • J. Kim, M.K. Chaudhury, M.J. Owen, J. Colloid Interface Sci. 226, 231–236 (2000)

    Article  Google Scholar 

  • L.E. Kinsler, Fundamentals of acoustics, 4th edn. (Wiley, New York, 2000)

    Google Scholar 

  • M.K. Kurosawa, H. Itoh, K. Asai, Ultrasonics 41, 271–275 (2003)

    Article  Google Scholar 

  • A. Lenshof, A. Ahmad-Tajudin, K. Järås, A.-M. Swärd-Nilsson, L. Åberg, G. Marko-Varga, J. Malm, H. Lilja, T. Laurell, Anal. Chem. 81, 6030–3037 (2011)

    Google Scholar 

  • H.Y. Li, J.R. Friend, L.Y.L. Yeo, Phys. Rev. Lett., 101 (2008)

  • T. Lilliehorn, U. Simu, M. Nilsson, M. Almqvist, T. Stepinski, T. Laurell, J. Nilsson, S. Johansson, Ultrasonics 43, 293–303 (2005)

    Article  Google Scholar 

  • E.L. Madsen, H.J. Sathoff, J.A. Zagzebski, J. Acoust. Soc. Am. 74, 1346–1355 (1983)

    Article  Google Scholar 

  • S.P. Martin, R.J. Townsend, L.A. Kuznetsova, K.A.J. Borthwick, M. Hill, M.B. McDonnell, W.T. Coakley, Biosens. Bioelectron. 21, 758–767 (2005)

    Article  Google Scholar 

  • P.H. Mott, C.M. Roland, R.D. Corsaro, J. Acoust. Soc. Am. 111, 1782–1790 (2002)

    Article  Google Scholar 

  • J. Nam, Y. Lee, S. Shin, Microfluid Nanofluid 11, 317–326 (2011)

    Article  Google Scholar 

  • A. Nilsson, F. Petersson, H. Jonsson, T. Laurell, Lab Chip 4, 131–135 (2004)

    Article  Google Scholar 

  • F. Petersson, A. Nilsson, C. Holm, H. Jonsson, T. Laurell, Analyst 129, 938–943 (2004)

    Article  Google Scholar 

  • T. Pritz, J. Sound Vib. 214, 83–104 (1998)

    Article  Google Scholar 

  • T. Pritz, J. Sound Vib. 306, 790–802 (2007)

    Article  Google Scholar 

  • T. Ryll, G. Dutina, A. Reyes, J. Gunson, L. Krummen, T. Etcheverry, Biotechnol. Bioeng. 69, 440–449 (2000)

    Article  Google Scholar 

  • K.M. Seemann, J. Ebbecke, A. Wixforth, Nanotechnology 17, 4529–4532 (2006)

    Article  Google Scholar 

  • J.J. Shi, X.L. Mao, D. Ahmed, A. Colletti, T.J. Huang, Lab Chip 8, 221–223 (2008a)

    Article  Google Scholar 

  • J.J. Shi, D. Ahmed, X. Mao, T.J. Huang, Micro Electro Mechanical Systems, 2008. MEMS 2008. IEEE 21st International Conference on, (2008b)

  • J. Shi, H. Huang, Z. Stratton, Y. Huang, T.J. Huang, Lab Chip 9, 3354–3359 (2009a)

    Article  Google Scholar 

  • J. Shi, Y.B. Zheng, T.J. Huang, Micro Electro Mechanical Systems 2009. MEMS 2009. IEEE 22nd International Conference on (2009b)

  • M.K. Tan, J.R. Friend, L.Y. Yeo, Lab Chip 7, 618–625 (2007)

    Article  Google Scholar 

  • M.K. Tan, R. Tjeung, H. Ervin, L.Y. Yeo, J. Friend, Appl. Phys. Lett., 95 (2009)

  • R.J. Townsend, M. Hill, N.R. Harris, M.B. McDonnell, Ultrasonics 48, 515–520 (2008)

    Article  Google Scholar 

  • Y. Wada, H. Ochiai, R. Ito, J Phys Soc Jpn 17, 213 (1962)

    Article  Google Scholar 

  • M. Wiklund, H.M. Hertz, Lab Chip 6, 1279–1292 (2006)

    Article  Google Scholar 

  • M. Wiklund, C. Gunther, R. Lemor, M. Jager, G. Fuhr, H.M. Hertz, Lab Chip 6, 1537–1544 (2006)

    Article  Google Scholar 

  • C.D. Wood, S.D. Evans, J.E. Cunningham, R. O'Rorke, C. Walti, A.G. Davies, Appl. Phys. Lett. 92, 044104 (2008)

    Article  Google Scholar 

  • C.D. Wood, J.E. Cunningham, R. O'Rorke, C. Walti, E.H. Linfield, A.G. Davies, S.D. Evans, Appl. Phys. Lett. 94, 054101 (2009)

    Article  Google Scholar 

  • V. Yantchev, J. Enlund, I. Katardjiev, L. Johansson, J. Micromech. Microeng., 20 (2010)

  • L.Y. Yeo, J.R. Friend, Biomicrofluidics, 3 (2009)

  • K. Zell, J.I. Sperl, M.W. Vogel, R. Niessner, C. Haisch, Phys. Med. Biol. 52, N475–N484 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Prof. Anders Rydberg at Signals and Systems Department Uppsala University for providing the function generator and Dr. Zhigang Wu Material Science Uppsala University for providing the micro beads. Prof. Tamás Pritz at Szikkti Labs Hungary is acknowledged for valuable discussions regarding the frequency dependence of polymer material properties. We also want to thank Prof. Bengt Lundberg at Solid Mechanics Uppsala University for discussions on the dynamic mechanical properties of polymers and Richard O'Leary at the University of Strathclyde Scotland for discussions on measurement methods of sound speed in high-loss materials. None of the persons above have any responsibility for misprints or misunderstandings in the investigation. SSF MS2E and Vinnex VISENET are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Johansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, L., Enlund, J., Johansson, S. et al. Surface acoustic wave induced particle manipulation in a PDMS channel—principle concepts for continuous flow applications. Biomed Microdevices 14, 279–289 (2012). https://doi.org/10.1007/s10544-011-9606-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9606-7

Keywords

Navigation