Skip to main content

Advertisement

Log in

A miniaturized, optically accessible bioreactor for systematic 3D tissue engineering research

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Perfusion bioreactors are widely used in tissue engineering and pharmaceutical research to provide reliable models of tissue growth under controlled conditions. Destructive assays are not able to follow the evolution of the growing tissue on the same construct, so it is necessary to adopt non-destructive analysis. We have developed a miniaturized, optically accessible bioreactor for interstitial perfusion of 3D cell-seeded scaffolds. The scaffold adopted was optically transparent, with highly defined architecture. Computational fluid dynamics (CFD) analysis was useful to predict the flow behavior in the bioreactor scaffold chamber (that was laminar flow, Re = 0.179, with mean velocity equal to 100 microns/s). Moreover, experimental characterization of the bioreactor performance gave that the maximum allowable pressure was 0.06 MPa and allowable flow rate up to 25 ml/min. A method, to estimate quantitatively and non destructively the cell proliferation (from 15 to 43 thousand cells) and tissue growth (from 2% to 43%) during culture time, was introduced and validated. An end point viability test was performed to check the experimental set-up overall suitability for cell culture with successful results. Morphological analysis was performed at the end time point to show the complex tridimensional pattern of the biological tissue growth. Our system, characterized by controlled conditions in a wide range of allowable flow rate and pressure, permits to systematically study the influence of several parameters on engineered tissue growth, using viable staining and a standard fluorescence microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher, Green fluorescent protein as a marker for gene-expression. Science (1994). doi:10.1126/science.8303295

  • G.C. Engelmayr Jr., D. Papworth Glenn, C. Watkins Simon, J.E. Mayer Jr., S. Sacks Michael, Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures. Journal of Biomechanics (2005). doi:10.1016/j.jbiomech.2005.05.020

  • M.E. Gomes, I. Sikavitsas Vassilios, Esfandiar Behravesh, L. Reis Rui, G. Mikos Antonios, Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Journal of Biomedical Materials Research (2003). doi:10.1002/jbm.a.10075

  • D. Hutmacher, H. Singh, Computational fluid dynamics for improved bioreactor design and 3D culture. Trends in Biotechnology (2008). doi:10.1016/j.tibtech.2007.11.012

  • G. Kensah, I. Gruh, J. Viering, H. Schumann, J. Dahlmann, H. Meyer, D. Skvorc, A. Bar, P. Akhyari, A. Heisterkamp, A. Haverich, U. Martin, A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation. Tissue Engineering (2011). doi:10.1089/ten.tec.2010.0405

  • L. Kim, Y.-C. Toh, J. Voldman, H. Yu, A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab on a Chip (2007). doi:10.1039/b704602b

  • K.N. Krahn, V.C. Bouten Carlijn, S. van Tuijl, M.A.M.J. van Zandvoort, M. Merkx, Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture. Analytical Biochemistry (2006). doi:10.1016/j.ab.2006.01.013

  • E. Leclerc, Y. Sakai, T. Fujii, Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomedical Microdevices (2003). doi:10.1023/A:1024583026925

  • M.J. Lydon, K.D. Keeler, D. Thomas, Vital DNA staining and cell sorting by flow microfluorometry. Journal of Cellular Physiology (1980). doi:10.1002/jcp.1041020208

  • I. Martin, D. Wendt, M. Heberer, The role of bioreactors in tissue engineering. Trends in Biotechnology (2004). doi:10.1016/j.tibtech.2003.12.001

  • S.K. Moore, S.J. Kleis, Characterization of a novel miniature cell culture device. Acta Astronautica (2008). doi:10.1016/j.actaastro.2008.01.027

  • N.T. Elliott, F. Yuan, A review of three-dimensional in vitro tissue models for drug discovery and transport studies. Journal of Pharmaceutical Sciences (2010). doi:10.1002/jps.22257

  • J.A. Paten, R. Zareian, N. Saeidi, S.A. Melotti, J.W. Ruberti, Design and performance of an optically accessible, low-volume, mechanobioreactor for long-term study of living constructs. Tissue Engineering (2011). doi:10.1089/ten.tec.2010.0642

  • J.A. Pedersen, M.A. Swartz, Mechanobiology in the third dimension. Annals of Biomedical Engineering (2005). doi:10.1007/s10439-005-8159-4

  • M.J. Powers, K. Domansky, M.R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K.E. Wack, D.B. Stolz, R. Kamm, L.G. Griffith, A microfabricated array bioreactor for perfused 3D liver culture. Biotechnology and Bioengineering (2002). doi:10.1002/bit.10143

  • M.T. Raimondi, F. Boschetti, L. Falcone, G.B. Fiore, A. Remuzzi, E. Marinoni, M. Marazzi, R. Pietrabissa, Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Biomechanics and Modeling in Mechanobiology (2002). doi:10.1007/s10237-002-0007-y

  • M.T. Raimondi, G. Candiani, M. Cabras, M. Cioffi, K. Laganà, M. Moretti, R. Pietrabissa, Engineered cartilage constructs subject to very low regimens of interstitial perfusion. Biorheology (2008). doi:10.3233/BIR-2008-0490

  • M. T. Raimondi, D. T. Bridgen, M. Laganà, B. Tonnarelli, M. Cioffi, F. Boschetti, D. Wendt, In Methods in bioengineering 3D Tissue Engineering. Ed. By Berthiaume F and. Morgan Js (MIB), Yarmush ML, Langer RS (Eds) (Artech House, Boston, 2010), P. 237 ISBN: 978-1-59693-458-0.

  • M. Rasponi, F. Piraino, N. Sadr, M. Lagana’, A. Redaelli, M. Moretti, Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation. Microfluid Nanofluid (2010). doi:10.1007/s10404-010-0738-5

  • W.A. Rutala, D.J. Weber, Infection control: the role of disinfection and sterilization. Journal of Hospital Infection (1999). doi:10.1016/S0195-6701(99)90065-8

  • V.I. Sikavitsas, G.N. Bancroft, H.L. Holtorf, J.A. Jansen, A.G. Mikos, Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. PNAS (2003). doi:10.1073/pnas.2434367100

  • J.S. Stephens, J.A. Cooper, F.R. Phelan Jr., J.P. Dunkers, Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions. Biotechnology and Bioengineering (2007). doi:10.1002/bit.21252

  • T. Sun, R. Smallwood, S. Mac Neil, Development of a mini 3D cell culture system using well defined nickel grids for the investigation of cell scaffold interactions. Journal of Materials Science Materials in Medicine (2009). doi:10.1007/s10856-009-3703-7

  • V. Vickerman, J. Blundo, S. Chung, R. Kamm, Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab on a Chip (2008). doi:10.1039/b802395f

  • H. Witte, M. Stubenrauch, U. Frober, R. Fischer, D. Voges, M. Hoffmann, Integration of 3-D cell cultures in fluidic microsystems for biological screenings. Engineering in Life Sciences (2011). doi:10.1002/elsc.201000045

Download references

Acknowledgements

Funding grants: 5 per Mille Junior CUP D41J10000490001 (Politecnico di Milano) project “Computational models for heterogeneous media. Application to Microscale analysis of tissue-engineered constructs”; IIT (Genoa) project “Biosensors and Artificial Bio-systems”; Cariplo 2010 project “3D Microstructuring and Functionalization of Polymeric Materials for Scaffolds in Regenerative Medicine”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Laganà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laganà, M., Raimondi, M.T. A miniaturized, optically accessible bioreactor for systematic 3D tissue engineering research. Biomed Microdevices 14, 225–234 (2012). https://doi.org/10.1007/s10544-011-9600-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9600-0

Keywords

Navigation